On the Stability of 2D Dipolar Bose--Einstein Condensates
We study the existence of energy minimizers for a Bose-Einstein condensate with dipole-dipole interactions, tightly confined to a plane. The problem is critical in that the kinetic energy and the (partially attractive) interaction energy behave the same under mass-preserving scalings of the wave-fun...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2019-01, Vol.51 (2), p.1371-1386 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the existence of energy minimizers for a Bose-Einstein condensate with dipole-dipole interactions, tightly confined to a plane. The problem is critical in that the kinetic energy and the (partially attractive) interaction energy behave the same under mass-preserving scalings of the wave-function. We obtain a sharp criterion for the existence of ground states, involving the optimal constant of a certain generalized Gagliardo-Nirenberg inequality. |
---|---|
ISSN: | 0036-1410 1095-7154 |
DOI: | 10.1137/18M1216663 |