Dialkenylmagnesium Compounds in Coordinative Chain Transfer Polymerization of Ethylene. Reversible Chain Transfer Agents and Tools To Probe Catalyst Selectivities toward Ring Formation

A range of dialkenylmagnesium compounds ([CH2CH­(CH2) n ]2Mg; n = 1–6) were synthesized and used as chain transfer agents (CTA) with either (C5Me5)2NdCl2Li­(OEt2)2 (1) or [Me2Si­(C13H8)2Nd­(BH4)2Li­(thf)]2 (2) neodymium precursors for the polymerization of ethylene. In all cases, the systems follow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Organometallics 2018-05, Vol.37 (10), p.1546-1554
Hauptverfasser: Belaid, Islem, Poradowski, Marie-Noëlle, Bouaouli, Samira, Thuilliez, Julien, Perrin, Lionel, D’Agosto, Franck, Boisson, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A range of dialkenylmagnesium compounds ([CH2CH­(CH2) n ]2Mg; n = 1–6) were synthesized and used as chain transfer agents (CTA) with either (C5Me5)2NdCl2Li­(OEt2)2 (1) or [Me2Si­(C13H8)2Nd­(BH4)2Li­(thf)]2 (2) neodymium precursors for the polymerization of ethylene. In all cases, the systems followed a controlled coordinative chain transfer polymerization mechanism. The intramolecular insertion of the vinyl group on the CTA in growing chains is possible and led to the formation of cyclopentyl, cyclohexyl, and possibly cycloheptyl chain ends. While the production of cyclopentyl- or cyclohexyl-capped polyethylene chains can be quantitative (n = 2–5), the integrity of this double bond can also be kept if n is higher than 6. In comparison to 1/CTA catalytic systems, 2/CTA catalytic systems showed a higher propensity to produce cycloalkyl chain ends. This was ascribed to the lower steric demand around the active site, as shown by DFT calculations. In addition, the formation of bis­(cyclopentylmethyl)­magnesium from dipentenylmagnesium using a catalytic amount of 2 was shown.
ISSN:0276-7333
1520-6041
DOI:10.1021/acs.organomet.8b00127