Spectral Stability of Inviscid Roll Waves
We carry out a systematic analytical and numerical study of spectral stability of discontinuous roll wave solutions of the inviscid Saint-Venant equations, based on a periodic Evans–Lopatinsky determinant analogous to the periodic Evans function of Gardner in the (smooth) viscous case, obtaining a c...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2019-04, Vol.367 (1), p.265-316 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We carry out a systematic analytical and numerical study of spectral stability of discontinuous roll wave solutions of the inviscid Saint-Venant equations, based on a periodic Evans–Lopatinsky determinant analogous to the periodic Evans function of Gardner in the (smooth) viscous case, obtaining a complete spectral stability diagram useful in hydraulic engineering and related applications. In particular, we obtain an explicit low-frequency stability boundary, which, moreover, matches closely with its (numerically-determined) counterpart in the viscous case. This is seen to be related to but not implied by the associated formal first-order Whitham modulation equations. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-018-3277-7 |