Spectral Stability of Inviscid Roll Waves

We carry out a systematic analytical and numerical study of spectral stability of discontinuous roll wave solutions of the inviscid Saint-Venant equations, based on a periodic Evans–Lopatinsky determinant analogous to the periodic Evans function of Gardner in the (smooth) viscous case, obtaining a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2019-04, Vol.367 (1), p.265-316
Hauptverfasser: Johnson, Mathew A., Noble, Pascal, Rodrigues, L. Miguel, Yang, Zhao, Zumbrun, Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We carry out a systematic analytical and numerical study of spectral stability of discontinuous roll wave solutions of the inviscid Saint-Venant equations, based on a periodic Evans–Lopatinsky determinant analogous to the periodic Evans function of Gardner in the (smooth) viscous case, obtaining a complete spectral stability diagram useful in hydraulic engineering and related applications. In particular, we obtain an explicit low-frequency stability boundary, which, moreover, matches closely with its (numerically-determined) counterpart in the viscous case. This is seen to be related to but not implied by the associated formal first-order Whitham modulation equations.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-018-3277-7