Approximation capability of two hidden layer feedforward neural networks with fixed weights
We algorithmically construct a two hidden layer feedforward neural network (TLFN) model with the weights fixed as the unit coordinate vectors of the d-dimensional Euclidean space and having 3d+2 number of hidden neurons in total, which can approximate any continuous d-variable function with an arbit...
Gespeichert in:
Veröffentlicht in: | Neurocomputing (Amsterdam) 2018-11, Vol.316, p.262-269 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We algorithmically construct a two hidden layer feedforward neural network (TLFN) model with the weights fixed as the unit coordinate vectors of the d-dimensional Euclidean space and having 3d+2 number of hidden neurons in total, which can approximate any continuous d-variable function with an arbitrary precision. This result, in particular, shows an advantage of the TLFN model over the single hidden layer feedforward neural network (SLFN) model, since SLFNs with fixed weights do not have the capability of approximating multivariate functions. |
---|---|
ISSN: | 0925-2312 1872-8286 |
DOI: | 10.1016/j.neucom.2018.07.075 |