Interacting effects of Hydrobia ulvae bioturbation and microphytobenthos on the erodibility of mudflat sediments
Microphytobenthos-macrofauna sediment interactions and their effects on sediment erodability were examined in laboratory experiments. Sediment beds were manipulated in a tidal mesocosm to produce diatom mats in exponential or in stationary phases of development after 6, 8 or 11 d of culture. These s...
Gespeichert in:
Veröffentlicht in: | Marine ecology. Progress series (Halstenbek) 2004-01, Vol.278, p.205-223 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microphytobenthos-macrofauna sediment interactions and their effects on sediment erodability were examined in laboratory experiments. Sediment beds were manipulated in a tidal mesocosm to produce diatom mats in exponential or in stationary phases of development after 6, 8 or 11 d of culture. These sediment beds were used in flume experiments to investigate the influence of bioturbation by the gastropod Hydrobia ulvae on both sediment and pigment resuspension as a function of the physiological state of the microphytobenthic mats. In most experiments, only a surface layer was resuspended. A model was used to analyze in detail the contribution of each variable to this surface-layer erosion. Bioturbation was the major factor controlling resuspension, and its extent was influenced by sediment density and the growth stage of the microphytobenthos. The amount and extent of bioturbation is assumed to be influenced by sediment density and chlorophyll a content. Snail bioturbation can, in turn, influence the amount of microalgal resuspension. The quantity of pigment resuspended due to bioturbation increased by a factor of 15 when the diatom mats were in exponential growth stages. However, as the age of the mat increased, the influence of bioturbation on pigment resuspension declined. When the mats became senescent, Type I erosion occurred with erosion rates high enough to obscure any effects of bioturbation. To summarize, we assume that there are 2 causes of microphytobenthos resuspension, depending on the physiological state of the mat: (1) in the exponential phase, bioturbation substantially affects the resuspension of pigments which are present in the surface layer (the biogenic fluff layer) and (2) in the senescent phase, the increase in bed roughness and water content renders the mat fragile, leading to bed erosion. |
---|---|
ISSN: | 0171-8630 1616-1599 |
DOI: | 10.3354/meps278205 |