On the Harborth constant of $C_3 \oplus C_{3p}
For a finite abelian group $(G,+, 0)$ the Harborth constant $g(G)$ is the smallest integer $k$ such that each squarefree sequence over $G$ of length $k$, equivalently each subset of $G$ of cardinality at least $k$, has a subsequence of length $\exp(G)$ whose sum is $0$. In this paper, it is establis...
Gespeichert in:
Veröffentlicht in: | Journal de Théorie des Nombres de Bordeaux 2019, Vol.31 (3), p.613-633 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a finite abelian group $(G,+, 0)$ the Harborth constant $g(G)$ is the smallest integer $k$ such that each squarefree sequence over $G$ of length $k$, equivalently each subset of $G$ of cardinality at least $k$, has a subsequence of length $\exp(G)$ whose sum is $0$. In this paper, it is established that $g(G)= 3n + 3$ for prime $n \neq 3$ and $g(C_3 \oplus C_{9})= 13$. |
---|---|
ISSN: | 2118-8572 1246-7405 |
DOI: | 10.5802/jtnb.1097 |