On the Harborth constant of $C_3 \oplus C_{3p}

For a finite abelian group $(G,+, 0)$ the Harborth constant $g(G)$ is the smallest integer $k$ such that each squarefree sequence over $G$ of length $k$, equivalently each subset of $G$ of cardinality at least $k$, has a subsequence of length $\exp(G)$ whose sum is $0$. In this paper, it is establis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal de Théorie des Nombres de Bordeaux 2019, Vol.31 (3), p.613-633
Hauptverfasser: Guillot, Philippe, Marchan, Luz E., Ordaz, Oscar, Schmid, Wolfgang A., Zerdoum, Hanane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a finite abelian group $(G,+, 0)$ the Harborth constant $g(G)$ is the smallest integer $k$ such that each squarefree sequence over $G$ of length $k$, equivalently each subset of $G$ of cardinality at least $k$, has a subsequence of length $\exp(G)$ whose sum is $0$. In this paper, it is established that $g(G)= 3n + 3$ for prime $n \neq 3$ and $g(C_3 \oplus C_{9})= 13$.
ISSN:2118-8572
1246-7405
DOI:10.5802/jtnb.1097