On the Complexity Exponent of Polynomial System Solving
We present a probabilistic Las Vegas algorithm for solving sufficiently generic square polynomial systems over finite fields. We achieve a nearly quadratic running time in the number of solutions, for densely represented input polynomials. We also prove a nearly linear bit complexity bound for polyn...
Gespeichert in:
Veröffentlicht in: | Foundations of computational mathematics 2021-02, Vol.21 (1), p.1-57 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Foundations of computational mathematics |
container_volume | 21 |
creator | van der Hoeven, Joris Lecerf, Grégoire |
description | We present a probabilistic Las Vegas algorithm for solving sufficiently generic square polynomial systems over finite fields. We achieve a nearly quadratic running time in the number of solutions, for densely represented input polynomials. We also prove a nearly linear bit complexity bound for polynomial systems with rational coefficients. Our results are obtained using the combination of the Kronecker solver and a new improved algorithm for fast multivariate modular composition. |
doi_str_mv | 10.1007/s10208-020-09453-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01848572v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A651686077</galeid><sourcerecordid>A651686077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-ae5c6d25daecfcc619a77b9712a5912d58122ce6ed063feaa4f522e77dd376593</originalsourceid><addsrcrecordid>eNp9kV1L9DAQhYso-PkHvCp45UU1H03SXi6LrwoLiqvXIabTGmmTfZOs7P57s1aUhUUCk2F4TjKck2XnGF1hhMR1wIigqkilQHXJaIH2siPMMSsorej-Ty_YYXYcwjtCmNW4PMrEg83jG-RTNyx6WJm4zm9WC2fBxty1-aPr19YNRvX5fB0iDPnc9R_GdqfZQav6AGff90n28u_meXpXzB5u76eTWaEZ5bFQwDRvCGsU6FZrjmslxGstMFHpf9KwChOigUODOG1BqbJlhIAQTUMFZzU9yS7Hd99ULxfeDMqvpVNG3k1mcjNDuCorJsgHSezFyC68-7-EEOW7W3qb1pOkrGqEa8LEL9WpHqSxrYte6cEELSecYV5xJDZUsYPqwIJXfbKnNWm8xV_t4NNpYDB6p-ByS5CYCKvYqWUI8n7-tM2SkdXeheCh_XECI7nJX475y1TkV_4SJREdRSHBtgP_68Yfqk8GG65F</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489019257</pqid></control><display><type>article</type><title>On the Complexity Exponent of Polynomial System Solving</title><source>SpringerNature Journals</source><creator>van der Hoeven, Joris ; Lecerf, Grégoire</creator><creatorcontrib>van der Hoeven, Joris ; Lecerf, Grégoire</creatorcontrib><description>We present a probabilistic Las Vegas algorithm for solving sufficiently generic square polynomial systems over finite fields. We achieve a nearly quadratic running time in the number of solutions, for densely represented input polynomials. We also prove a nearly linear bit complexity bound for polynomial systems with rational coefficients. Our results are obtained using the combination of the Kronecker solver and a new improved algorithm for fast multivariate modular composition.</description><identifier>ISSN: 1615-3375</identifier><identifier>EISSN: 1615-3383</identifier><identifier>DOI: 10.1007/s10208-020-09453-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Complexity ; Computational Complexity ; Computer Science ; Economics ; Fields (mathematics) ; Linear and Multilinear Algebras ; Math Applications in Computer Science ; Mathematics ; Mathematics and Statistics ; Matrix Theory ; Numerical Analysis ; Polynomials ; Rings and Algebras ; Symbolic Computation</subject><ispartof>Foundations of computational mathematics, 2021-02, Vol.21 (1), p.1-57</ispartof><rights>SFoCM 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>SFoCM 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-ae5c6d25daecfcc619a77b9712a5912d58122ce6ed063feaa4f522e77dd376593</citedby><cites>FETCH-LOGICAL-c536t-ae5c6d25daecfcc619a77b9712a5912d58122ce6ed063feaa4f522e77dd376593</cites><orcidid>0000-0003-2244-1897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10208-020-09453-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10208-020-09453-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01848572$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>van der Hoeven, Joris</creatorcontrib><creatorcontrib>Lecerf, Grégoire</creatorcontrib><title>On the Complexity Exponent of Polynomial System Solving</title><title>Foundations of computational mathematics</title><addtitle>Found Comput Math</addtitle><description>We present a probabilistic Las Vegas algorithm for solving sufficiently generic square polynomial systems over finite fields. We achieve a nearly quadratic running time in the number of solutions, for densely represented input polynomials. We also prove a nearly linear bit complexity bound for polynomial systems with rational coefficients. Our results are obtained using the combination of the Kronecker solver and a new improved algorithm for fast multivariate modular composition.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Complexity</subject><subject>Computational Complexity</subject><subject>Computer Science</subject><subject>Economics</subject><subject>Fields (mathematics)</subject><subject>Linear and Multilinear Algebras</subject><subject>Math Applications in Computer Science</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix Theory</subject><subject>Numerical Analysis</subject><subject>Polynomials</subject><subject>Rings and Algebras</subject><subject>Symbolic Computation</subject><issn>1615-3375</issn><issn>1615-3383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kV1L9DAQhYso-PkHvCp45UU1H03SXi6LrwoLiqvXIabTGmmTfZOs7P57s1aUhUUCk2F4TjKck2XnGF1hhMR1wIigqkilQHXJaIH2siPMMSsorej-Ty_YYXYcwjtCmNW4PMrEg83jG-RTNyx6WJm4zm9WC2fBxty1-aPr19YNRvX5fB0iDPnc9R_GdqfZQav6AGff90n28u_meXpXzB5u76eTWaEZ5bFQwDRvCGsU6FZrjmslxGstMFHpf9KwChOigUODOG1BqbJlhIAQTUMFZzU9yS7Hd99ULxfeDMqvpVNG3k1mcjNDuCorJsgHSezFyC68-7-EEOW7W3qb1pOkrGqEa8LEL9WpHqSxrYte6cEELSecYV5xJDZUsYPqwIJXfbKnNWm8xV_t4NNpYDB6p-ByS5CYCKvYqWUI8n7-tM2SkdXeheCh_XECI7nJX475y1TkV_4SJREdRSHBtgP_68Yfqk8GG65F</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>van der Hoeven, Joris</creator><creator>Lecerf, Grégoire</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2244-1897</orcidid></search><sort><creationdate>20210201</creationdate><title>On the Complexity Exponent of Polynomial System Solving</title><author>van der Hoeven, Joris ; Lecerf, Grégoire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-ae5c6d25daecfcc619a77b9712a5912d58122ce6ed063feaa4f522e77dd376593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Complexity</topic><topic>Computational Complexity</topic><topic>Computer Science</topic><topic>Economics</topic><topic>Fields (mathematics)</topic><topic>Linear and Multilinear Algebras</topic><topic>Math Applications in Computer Science</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix Theory</topic><topic>Numerical Analysis</topic><topic>Polynomials</topic><topic>Rings and Algebras</topic><topic>Symbolic Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Hoeven, Joris</creatorcontrib><creatorcontrib>Lecerf, Grégoire</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Foundations of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Hoeven, Joris</au><au>Lecerf, Grégoire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Complexity Exponent of Polynomial System Solving</atitle><jtitle>Foundations of computational mathematics</jtitle><stitle>Found Comput Math</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>21</volume><issue>1</issue><spage>1</spage><epage>57</epage><pages>1-57</pages><issn>1615-3375</issn><eissn>1615-3383</eissn><abstract>We present a probabilistic Las Vegas algorithm for solving sufficiently generic square polynomial systems over finite fields. We achieve a nearly quadratic running time in the number of solutions, for densely represented input polynomials. We also prove a nearly linear bit complexity bound for polynomial systems with rational coefficients. Our results are obtained using the combination of the Kronecker solver and a new improved algorithm for fast multivariate modular composition.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10208-020-09453-0</doi><tpages>57</tpages><orcidid>https://orcid.org/0000-0003-2244-1897</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-3375 |
ispartof | Foundations of computational mathematics, 2021-02, Vol.21 (1), p.1-57 |
issn | 1615-3375 1615-3383 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01848572v2 |
source | SpringerNature Journals |
subjects | Algorithms Applications of Mathematics Complexity Computational Complexity Computer Science Economics Fields (mathematics) Linear and Multilinear Algebras Math Applications in Computer Science Mathematics Mathematics and Statistics Matrix Theory Numerical Analysis Polynomials Rings and Algebras Symbolic Computation |
title | On the Complexity Exponent of Polynomial System Solving |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A50%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Complexity%20Exponent%20of%20Polynomial%20System%20Solving&rft.jtitle=Foundations%20of%20computational%20mathematics&rft.au=van%20der%20Hoeven,%20Joris&rft.date=2021-02-01&rft.volume=21&rft.issue=1&rft.spage=1&rft.epage=57&rft.pages=1-57&rft.issn=1615-3375&rft.eissn=1615-3383&rft_id=info:doi/10.1007/s10208-020-09453-0&rft_dat=%3Cgale_hal_p%3EA651686077%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489019257&rft_id=info:pmid/&rft_galeid=A651686077&rfr_iscdi=true |