On the Complexity Exponent of Polynomial System Solving

We present a probabilistic Las Vegas algorithm for solving sufficiently generic square polynomial systems over finite fields. We achieve a nearly quadratic running time in the number of solutions, for densely represented input polynomials. We also prove a nearly linear bit complexity bound for polyn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics 2021-02, Vol.21 (1), p.1-57
Hauptverfasser: van der Hoeven, Joris, Lecerf, Grégoire
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue 1
container_start_page 1
container_title Foundations of computational mathematics
container_volume 21
creator van der Hoeven, Joris
Lecerf, Grégoire
description We present a probabilistic Las Vegas algorithm for solving sufficiently generic square polynomial systems over finite fields. We achieve a nearly quadratic running time in the number of solutions, for densely represented input polynomials. We also prove a nearly linear bit complexity bound for polynomial systems with rational coefficients. Our results are obtained using the combination of the Kronecker solver and a new improved algorithm for fast multivariate modular composition.
doi_str_mv 10.1007/s10208-020-09453-0
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01848572v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A651686077</galeid><sourcerecordid>A651686077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-ae5c6d25daecfcc619a77b9712a5912d58122ce6ed063feaa4f522e77dd376593</originalsourceid><addsrcrecordid>eNp9kV1L9DAQhYso-PkHvCp45UU1H03SXi6LrwoLiqvXIabTGmmTfZOs7P57s1aUhUUCk2F4TjKck2XnGF1hhMR1wIigqkilQHXJaIH2siPMMSsorej-Ty_YYXYcwjtCmNW4PMrEg83jG-RTNyx6WJm4zm9WC2fBxty1-aPr19YNRvX5fB0iDPnc9R_GdqfZQav6AGff90n28u_meXpXzB5u76eTWaEZ5bFQwDRvCGsU6FZrjmslxGstMFHpf9KwChOigUODOG1BqbJlhIAQTUMFZzU9yS7Hd99ULxfeDMqvpVNG3k1mcjNDuCorJsgHSezFyC68-7-EEOW7W3qb1pOkrGqEa8LEL9WpHqSxrYte6cEELSecYV5xJDZUsYPqwIJXfbKnNWm8xV_t4NNpYDB6p-ByS5CYCKvYqWUI8n7-tM2SkdXeheCh_XECI7nJX475y1TkV_4SJREdRSHBtgP_68Yfqk8GG65F</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489019257</pqid></control><display><type>article</type><title>On the Complexity Exponent of Polynomial System Solving</title><source>SpringerNature Journals</source><creator>van der Hoeven, Joris ; Lecerf, Grégoire</creator><creatorcontrib>van der Hoeven, Joris ; Lecerf, Grégoire</creatorcontrib><description>We present a probabilistic Las Vegas algorithm for solving sufficiently generic square polynomial systems over finite fields. We achieve a nearly quadratic running time in the number of solutions, for densely represented input polynomials. We also prove a nearly linear bit complexity bound for polynomial systems with rational coefficients. Our results are obtained using the combination of the Kronecker solver and a new improved algorithm for fast multivariate modular composition.</description><identifier>ISSN: 1615-3375</identifier><identifier>EISSN: 1615-3383</identifier><identifier>DOI: 10.1007/s10208-020-09453-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Complexity ; Computational Complexity ; Computer Science ; Economics ; Fields (mathematics) ; Linear and Multilinear Algebras ; Math Applications in Computer Science ; Mathematics ; Mathematics and Statistics ; Matrix Theory ; Numerical Analysis ; Polynomials ; Rings and Algebras ; Symbolic Computation</subject><ispartof>Foundations of computational mathematics, 2021-02, Vol.21 (1), p.1-57</ispartof><rights>SFoCM 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>SFoCM 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-ae5c6d25daecfcc619a77b9712a5912d58122ce6ed063feaa4f522e77dd376593</citedby><cites>FETCH-LOGICAL-c536t-ae5c6d25daecfcc619a77b9712a5912d58122ce6ed063feaa4f522e77dd376593</cites><orcidid>0000-0003-2244-1897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10208-020-09453-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10208-020-09453-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01848572$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>van der Hoeven, Joris</creatorcontrib><creatorcontrib>Lecerf, Grégoire</creatorcontrib><title>On the Complexity Exponent of Polynomial System Solving</title><title>Foundations of computational mathematics</title><addtitle>Found Comput Math</addtitle><description>We present a probabilistic Las Vegas algorithm for solving sufficiently generic square polynomial systems over finite fields. We achieve a nearly quadratic running time in the number of solutions, for densely represented input polynomials. We also prove a nearly linear bit complexity bound for polynomial systems with rational coefficients. Our results are obtained using the combination of the Kronecker solver and a new improved algorithm for fast multivariate modular composition.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Complexity</subject><subject>Computational Complexity</subject><subject>Computer Science</subject><subject>Economics</subject><subject>Fields (mathematics)</subject><subject>Linear and Multilinear Algebras</subject><subject>Math Applications in Computer Science</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix Theory</subject><subject>Numerical Analysis</subject><subject>Polynomials</subject><subject>Rings and Algebras</subject><subject>Symbolic Computation</subject><issn>1615-3375</issn><issn>1615-3383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kV1L9DAQhYso-PkHvCp45UU1H03SXi6LrwoLiqvXIabTGmmTfZOs7P57s1aUhUUCk2F4TjKck2XnGF1hhMR1wIigqkilQHXJaIH2siPMMSsorej-Ty_YYXYcwjtCmNW4PMrEg83jG-RTNyx6WJm4zm9WC2fBxty1-aPr19YNRvX5fB0iDPnc9R_GdqfZQav6AGff90n28u_meXpXzB5u76eTWaEZ5bFQwDRvCGsU6FZrjmslxGstMFHpf9KwChOigUODOG1BqbJlhIAQTUMFZzU9yS7Hd99ULxfeDMqvpVNG3k1mcjNDuCorJsgHSezFyC68-7-EEOW7W3qb1pOkrGqEa8LEL9WpHqSxrYte6cEELSecYV5xJDZUsYPqwIJXfbKnNWm8xV_t4NNpYDB6p-ByS5CYCKvYqWUI8n7-tM2SkdXeheCh_XECI7nJX475y1TkV_4SJREdRSHBtgP_68Yfqk8GG65F</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>van der Hoeven, Joris</creator><creator>Lecerf, Grégoire</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2244-1897</orcidid></search><sort><creationdate>20210201</creationdate><title>On the Complexity Exponent of Polynomial System Solving</title><author>van der Hoeven, Joris ; Lecerf, Grégoire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-ae5c6d25daecfcc619a77b9712a5912d58122ce6ed063feaa4f522e77dd376593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Complexity</topic><topic>Computational Complexity</topic><topic>Computer Science</topic><topic>Economics</topic><topic>Fields (mathematics)</topic><topic>Linear and Multilinear Algebras</topic><topic>Math Applications in Computer Science</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix Theory</topic><topic>Numerical Analysis</topic><topic>Polynomials</topic><topic>Rings and Algebras</topic><topic>Symbolic Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Hoeven, Joris</creatorcontrib><creatorcontrib>Lecerf, Grégoire</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Foundations of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Hoeven, Joris</au><au>Lecerf, Grégoire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Complexity Exponent of Polynomial System Solving</atitle><jtitle>Foundations of computational mathematics</jtitle><stitle>Found Comput Math</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>21</volume><issue>1</issue><spage>1</spage><epage>57</epage><pages>1-57</pages><issn>1615-3375</issn><eissn>1615-3383</eissn><abstract>We present a probabilistic Las Vegas algorithm for solving sufficiently generic square polynomial systems over finite fields. We achieve a nearly quadratic running time in the number of solutions, for densely represented input polynomials. We also prove a nearly linear bit complexity bound for polynomial systems with rational coefficients. Our results are obtained using the combination of the Kronecker solver and a new improved algorithm for fast multivariate modular composition.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10208-020-09453-0</doi><tpages>57</tpages><orcidid>https://orcid.org/0000-0003-2244-1897</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1615-3375
ispartof Foundations of computational mathematics, 2021-02, Vol.21 (1), p.1-57
issn 1615-3375
1615-3383
language eng
recordid cdi_hal_primary_oai_HAL_hal_01848572v2
source SpringerNature Journals
subjects Algorithms
Applications of Mathematics
Complexity
Computational Complexity
Computer Science
Economics
Fields (mathematics)
Linear and Multilinear Algebras
Math Applications in Computer Science
Mathematics
Mathematics and Statistics
Matrix Theory
Numerical Analysis
Polynomials
Rings and Algebras
Symbolic Computation
title On the Complexity Exponent of Polynomial System Solving
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A50%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Complexity%20Exponent%20of%20Polynomial%20System%20Solving&rft.jtitle=Foundations%20of%20computational%20mathematics&rft.au=van%20der%20Hoeven,%20Joris&rft.date=2021-02-01&rft.volume=21&rft.issue=1&rft.spage=1&rft.epage=57&rft.pages=1-57&rft.issn=1615-3375&rft.eissn=1615-3383&rft_id=info:doi/10.1007/s10208-020-09453-0&rft_dat=%3Cgale_hal_p%3EA651686077%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489019257&rft_id=info:pmid/&rft_galeid=A651686077&rfr_iscdi=true