On the Complexity Exponent of Polynomial System Solving
We present a probabilistic Las Vegas algorithm for solving sufficiently generic square polynomial systems over finite fields. We achieve a nearly quadratic running time in the number of solutions, for densely represented input polynomials. We also prove a nearly linear bit complexity bound for polyn...
Gespeichert in:
Veröffentlicht in: | Foundations of computational mathematics 2021-02, Vol.21 (1), p.1-57 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a probabilistic Las Vegas algorithm for solving sufficiently generic square polynomial systems over finite fields. We achieve a nearly quadratic running time in the number of solutions, for densely represented input polynomials. We also prove a nearly linear bit complexity bound for polynomial systems with rational coefficients. Our results are obtained using the combination of the Kronecker solver and a new improved algorithm for fast multivariate modular composition. |
---|---|
ISSN: | 1615-3375 1615-3383 |
DOI: | 10.1007/s10208-020-09453-0 |