Axisymmetric stability of the flow between two exactly counter-rotating disks with large aspect ratio
We study the first bifurcation in the axisymmetric flow between two exactly counter-rotating disks with very large aspect ratio $ \Gamma\,{\equiv}\, R/H$, where $R$ is the disk radius and $2 H$ is the inter-disk spacing. The scaling law for the critical Reynolds number is found to be $\Rey_c \propto...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2006-01, Vol.546 (1), p.193-202 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the first bifurcation in the axisymmetric flow between two exactly counter-rotating disks with very large aspect ratio $ \Gamma\,{\equiv}\, R/H$, where $R$ is the disk radius and $2 H$ is the inter-disk spacing. The scaling law for the critical Reynolds number is found to be $\Rey_c \propto \Gamma^{-1/2}$, with $\Rey \,{\equiv}\, \Omega H^2/\nu$, $\Omega$ being the magnitude of the angular velocity and $\nu$ the kinematic viscosity. An asymptotic analysis for large $\Gamma$ is developed, in which curvature is neglected, but the centrifugal acceleration term is retained. The Navier–Stokes equations then reduce to leading order to those in a Cartesian frame, and the axisymmetric base flow to a parallel flow. This allows us locally to use a Fourier decomposition along the radial direction. In this framework, we explain the physical mechanism of the instability invoking the linear azimuthal velocity profile and the effect of centrifugal acceleration. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/S0022112005007433 |