Coupling continuous damage and debris fragmentation for energy absorption prediction by cfrp structures during crushing
Energy absorption during crushing is evaluated using a thermodynamic based continuum damage model inspired from the Matzenmiller–Lubliner–Taylors model. It was found that for crash-worthiness applications, it is necessary to couple the progressive ruin of the material to a representation of the matt...
Gespeichert in:
Veröffentlicht in: | Computational particle mechanics 2015-05, Vol.2 (1), p.1-17 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Energy absorption during crushing is evaluated using a thermodynamic based continuum damage model inspired from the Matzenmiller–Lubliner–Taylors model. It was found that for crash-worthiness applications, it is necessary to couple the progressive ruin of the material to a representation of the matter openings and debris generation. Element kill technique (erosion) and/or cohesive elements are efficient but not predictive. A technique switching finite elements into discrete particles at rupture is used to create debris and accumulated mater during the crushing of the structure. Switching criteria are evaluated using the contribution of the different ruin modes in the damage evolution, energy absorption, and reaction force generation. |
---|---|
ISSN: | 2196-4378 2196-4386 |
DOI: | 10.1007/s40571-014-0031-6 |