Identical Hg Isotope Mass Dependent Fractionation Signature during Methylation by Sulfate-Reducing Bacteria in Sulfate and Sulfate-Free Environment
Inorganic mercury (iHg) methylation in aquatic environments is the first step leading to monomethylmercury (MMHg) bioaccumulation in food webs and might play a role in the Hg isotopic composition measured in sediments and organisms. Methylation by sulfate reducing bacteria (SRB) under sulfate-reduci...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2015-02, Vol.49 (3), p.1365-1373 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inorganic mercury (iHg) methylation in aquatic environments is the first step leading to monomethylmercury (MMHg) bioaccumulation in food webs and might play a role in the Hg isotopic composition measured in sediments and organisms. Methylation by sulfate reducing bacteria (SRB) under sulfate-reducing conditions is probably one of the most important sources of MMHg in natural aquatic environments, but its influence on natural Hg isotopic composition remains to be ascertained. In this context, the methylating SRB Desulfovibrio dechloracetivorans (strain BerOc1) was incubated under sulfate reducing and fumarate respiration conditions (SR and FR, respectively) to determine Hg species specific (MMHg and IHg) isotopic composition associated with methylation and demethylation kinetics. Our results clearly establish Hg isotope mass-dependent fractionation (MDF) during biotic methylation (−1.20 to +0.58‰ for δ202Hg), but insignificant mass-independent fractionation (MIF) (−0.12 to +0.15‰ for Δ201Hg). During the 24h of the time-course experiments Hg isotopic composition in the produced MMHg becomes significantly lighter than the residual IHg after 1.5h and shows similar δ202Hg values under both FR and SR conditions at the end of the experiments. This suggests a unique pathway responsible for the MDF of Hg isotopes during methylation by this strain regardless the metabolism of the cells. After 9 h of experiment, significant simultaneous demethylation is occurring in the culture and demethylates preferentially the lighter Hg isotopes of MMHg. Therefore, depending on their methylation/demethylation capacities, SRB communities in natural sulfate reducing conditions likely have a significant and specific influence on the Hg isotope composition of MMHg (MDF) in sediments and aquatic organisms. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/es5033376 |