Well-posedness of a Debye type system endowed with a full wave equation

We prove well-posedness for a transport-diffusion problem coupled with a wave equation for the potential. We assume that the initial data are small. A bilinear form in the spirit of Kato’s proof for the Navier–Stokes equations is used, coupled with suitable estimates in Chemin–Lerner spaces. In the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics letters 2018-07, Vol.81, p.27-34
1. Verfasser: Heibig, Arnaud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove well-posedness for a transport-diffusion problem coupled with a wave equation for the potential. We assume that the initial data are small. A bilinear form in the spirit of Kato’s proof for the Navier–Stokes equations is used, coupled with suitable estimates in Chemin–Lerner spaces. In the one dimensional case, we get well-posedness for arbitrarily large initial data by using Gagliardo–Nirenberg inequalities.
ISSN:0893-9659
1873-5452
DOI:10.1016/j.aml.2018.01.015