Well-posedness of a Debye type system endowed with a full wave equation
We prove well-posedness for a transport-diffusion problem coupled with a wave equation for the potential. We assume that the initial data are small. A bilinear form in the spirit of Kato’s proof for the Navier–Stokes equations is used, coupled with suitable estimates in Chemin–Lerner spaces. In the...
Gespeichert in:
Veröffentlicht in: | Applied mathematics letters 2018-07, Vol.81, p.27-34 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove well-posedness for a transport-diffusion problem coupled with a wave equation for the potential. We assume that the initial data are small. A bilinear form in the spirit of Kato’s proof for the Navier–Stokes equations is used, coupled with suitable estimates in Chemin–Lerner spaces. In the one dimensional case, we get well-posedness for arbitrarily large initial data by using Gagliardo–Nirenberg inequalities. |
---|---|
ISSN: | 0893-9659 1873-5452 |
DOI: | 10.1016/j.aml.2018.01.015 |