Arcades: A deep model for adaptive decision making in voice controlled smart-home

In a voice controlled smart-home, a controller must respond not only to user’s requests but also according to the interaction context. This paper describes Arcades, a system which uses deep reinforcement learning to extract context from a graphical representation of home automation system and to upd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pervasive and mobile computing 2018-09, Vol.49, p.92-110
Hauptverfasser: Brenon, Alexis, Portet, François, Vacher, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a voice controlled smart-home, a controller must respond not only to user’s requests but also according to the interaction context. This paper describes Arcades, a system which uses deep reinforcement learning to extract context from a graphical representation of home automation system and to update continuously its behavior to the user’s one. This system is robust to changes in the environment (sensor breakdown or addition) through its graphical representation (scale well) and the reinforcement mechanism (adapt well). The experiments on realistic data demonstrate that this method promises to reach long life context-aware control of smart-home.
ISSN:1574-1192
1873-1589
DOI:10.1016/j.pmcj.2018.06.011