The Fried conjecture in small dimensions
We study the twisted Ruelle zeta function ζ X ( s ) for smooth Anosov vector fields X acting on flat vector bundles over smooth compact manifolds. In dimension 3, we prove the Fried conjecture, relating Reidemeister torsion and ζ X ( 0 ) . In higher dimensions, we show more generally that ζ X ( 0 )...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2020-05, Vol.220 (2), p.525-579 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the twisted Ruelle zeta function
ζ
X
(
s
)
for smooth Anosov vector fields
X
acting on flat vector bundles over smooth compact manifolds. In dimension 3, we prove the Fried conjecture, relating Reidemeister torsion and
ζ
X
(
0
)
. In higher dimensions, we show more generally that
ζ
X
(
0
)
is locally constant with respect to the vector field
X
under a spectral condition. As a consequence, we also show the Fried conjecture for Anosov flows near the geodesic flow on the unit tangent bundle of hyperbolic 3-manifolds. This gives the first examples of non-analytic Anosov flows and geodesic flows in variable negative curvature where the Fried conjecture holds true. |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-019-00935-9 |