Atomic structure of grain boundaries in iron modeled using the atomic density function
A model based on the continuous atomic density function (ADF) approach is applied to predict the atomic structure of grain boundaries (GBs) in iron. Symmetrical [100] and [110] tilt GBs in bcc iron are modeled with the ADF method and relaxed afterwards in molecular dynamics (MD) simulations. The sha...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2014-01, Vol.89 (1), Article 014111 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A model based on the continuous atomic density function (ADF) approach is applied to predict the atomic structure of grain boundaries (GBs) in iron. Symmetrical [100] and [110] tilt GBs in bcc iron are modeled with the ADF method and relaxed afterwards in molecular dynamics (MD) simulations. The shape of the GB energy curve obtained in the ADF model reproduces well the peculiarities of the angles of 70.53[degrees] [ capital sigma 3(112)] and 129.52[degrees] [ capital sigma 11(332)] for [110] tilt GBs. The results of MD relaxation with an embedded-atom method potential for iron confirm that the atomic GB configurations obtained in ADF modeling are very close to equilibrium ones. The developed model provides well-localized atomic positions for GBs of various geometries. |
---|---|
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.89.014111 |