Bio-electrochemical characterization of air-cathode microbial fuel cells with microporous polyethylene/silica membrane as separator
The aim of this work was to study the behavior over time of a separator made of a low-cost and non-selective microporous polyethylene membrane (RhinoHide®) in an air-cathode microbial fuel cell with a reticulated vitreous carbon foam bioanode. Performances of the microporous polyethylene membrane (R...
Gespeichert in:
Veröffentlicht in: | Bioelectrochemistry (Amsterdam, Netherlands) Netherlands), 2015-12, Vol.106 (Pt A), p.115-124 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124 |
---|---|
container_issue | Pt A |
container_start_page | 115 |
container_title | Bioelectrochemistry (Amsterdam, Netherlands) |
container_volume | 106 |
creator | Kircheva, Nina Outin, Jonathan Perrier, Gérard Ramousse, Julien Merlin, Gérard Lyautey, Emilie |
description | The aim of this work was to study the behavior over time of a separator made of a low-cost and non-selective microporous polyethylene membrane (RhinoHide®) in an air-cathode microbial fuel cell with a reticulated vitreous carbon foam bioanode. Performances of the microporous polyethylene membrane (RhinoHide®) were compared with Nafion®-117 as a cationic exchange membrane. A non-parametric test (Mann–Whitney) done on the different sets of coulombic or energy efficiency data showed no significant difference between the two types of tested membrane (p |
doi_str_mv | 10.1016/j.bioelechem.2015.05.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01814301v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1567539415000742</els_id><sourcerecordid>1711545283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-3c545c10cfacc7f3f1fc57cfcb5d4d58e26f412d8568ed9bcfc84d15d89b43173</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEoqXwF5CPcMjWk8Qfe2wroEgrcQGJm-XYY8WrZL3Y2aLlyh9nopRyRBrJlueZd2b8VhUDvgEO8nq_6WPCEd2A06bhIDacAuSz6hK00rWQzffndBdS1aLddhfVq1L2nHMNSrysLhrJVSuVvKx-38ZUL0pzTotadHZkbrDZuhlz_GXnmA4sBWZjrp2dh-SREZVTH4kMJyQcx7Gwn3Ee1swx5XQq7JjGM87DecQDXpc4kjSbcOqzPSCzhRU8Ups55dfVi2DHgm8ez6vq28cPX-_u692XT5_vbna165Se69aJTjjgLljnVGgDBCeUC64XvvNCYyNDB43XQmr0254yuvMgvN72XQuqvarer7qDHc0xx8nms0k2mvubnVneOGjoWg4PQOy7lT3m9OOEZTZTLMuiNDwtZ0AB0DiNbgnVK0qrl5IxPGkDN4tdZm_-2WUWuwynAEmlbx-7nPoJ_VPhX38IuF0BpH95iJhNcREPDn3M5JnxKf6_yx_2rK8-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1711545283</pqid></control><display><type>article</type><title>Bio-electrochemical characterization of air-cathode microbial fuel cells with microporous polyethylene/silica membrane as separator</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kircheva, Nina ; Outin, Jonathan ; Perrier, Gérard ; Ramousse, Julien ; Merlin, Gérard ; Lyautey, Emilie</creator><creatorcontrib>Kircheva, Nina ; Outin, Jonathan ; Perrier, Gérard ; Ramousse, Julien ; Merlin, Gérard ; Lyautey, Emilie</creatorcontrib><description>The aim of this work was to study the behavior over time of a separator made of a low-cost and non-selective microporous polyethylene membrane (RhinoHide®) in an air-cathode microbial fuel cell with a reticulated vitreous carbon foam bioanode. Performances of the microporous polyethylene membrane (RhinoHide®) were compared with Nafion®-117 as a cationic exchange membrane. A non-parametric test (Mann–Whitney) done on the different sets of coulombic or energy efficiency data showed no significant difference between the two types of tested membrane (p<0.05). Volumetric power densities were ranging from 30 to 90W·m−3 of RVC foam for both membranes. Similar amounts of biomass were observed on both sides of the polyethylene membrane illustrating bacterial permeability of this type of separator. A monospecific denitrifying population on cathodic side of RhinoHide® membrane has been identified. Electrochemical impedance spectroscopy (EIS) was used at OCV conditions to characterize electrochemical behavior of MFCs by equivalent electrical circuit fitted on both Nyquist and Bode plots. Resistances and pseudo-capacitances from EIS analyses do not differ in such a way that the nature of the membrane could be considered as responsible.
•Volumetric power densities ranging from 30 to 90W·m−3 of RVC foam•Biofouling on both membranes with 150–300μM thickness after 8months of operation•A total of 77 bacterial 16S rRNA gene sequences recovered on both MFC membranes•Shannon diversity index of 1.330 for PE membrane and 2.032 for Nafion®</description><identifier>ISSN: 1567-5394</identifier><identifier>EISSN: 1878-562X</identifier><identifier>DOI: 10.1016/j.bioelechem.2015.05.016</identifier><identifier>PMID: 26073676</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Air ; Bioelectric Energy Sources - microbiology ; Biofouling ; Chemical and Process Engineering ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electrodes ; Engineering Sciences ; Membranes, Artificial ; Nonionic membrane ; Polyethylene - chemistry ; Polyethylene membrane ; Reticulated carbon foam ; Silicon Dioxide - chemistry</subject><ispartof>Bioelectrochemistry (Amsterdam, Netherlands), 2015-12, Vol.106 (Pt A), p.115-124</ispartof><rights>2015 Elsevier B.V.</rights><rights>Copyright © 2015 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-3c545c10cfacc7f3f1fc57cfcb5d4d58e26f412d8568ed9bcfc84d15d89b43173</citedby><cites>FETCH-LOGICAL-c478t-3c545c10cfacc7f3f1fc57cfcb5d4d58e26f412d8568ed9bcfc84d15d89b43173</cites><orcidid>0000-0002-6274-8087 ; 0000-0003-0754-197X ; 0000-0001-7367-7440</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bioelechem.2015.05.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26073676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01814301$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kircheva, Nina</creatorcontrib><creatorcontrib>Outin, Jonathan</creatorcontrib><creatorcontrib>Perrier, Gérard</creatorcontrib><creatorcontrib>Ramousse, Julien</creatorcontrib><creatorcontrib>Merlin, Gérard</creatorcontrib><creatorcontrib>Lyautey, Emilie</creatorcontrib><title>Bio-electrochemical characterization of air-cathode microbial fuel cells with microporous polyethylene/silica membrane as separator</title><title>Bioelectrochemistry (Amsterdam, Netherlands)</title><addtitle>Bioelectrochemistry</addtitle><description>The aim of this work was to study the behavior over time of a separator made of a low-cost and non-selective microporous polyethylene membrane (RhinoHide®) in an air-cathode microbial fuel cell with a reticulated vitreous carbon foam bioanode. Performances of the microporous polyethylene membrane (RhinoHide®) were compared with Nafion®-117 as a cationic exchange membrane. A non-parametric test (Mann–Whitney) done on the different sets of coulombic or energy efficiency data showed no significant difference between the two types of tested membrane (p<0.05). Volumetric power densities were ranging from 30 to 90W·m−3 of RVC foam for both membranes. Similar amounts of biomass were observed on both sides of the polyethylene membrane illustrating bacterial permeability of this type of separator. A monospecific denitrifying population on cathodic side of RhinoHide® membrane has been identified. Electrochemical impedance spectroscopy (EIS) was used at OCV conditions to characterize electrochemical behavior of MFCs by equivalent electrical circuit fitted on both Nyquist and Bode plots. Resistances and pseudo-capacitances from EIS analyses do not differ in such a way that the nature of the membrane could be considered as responsible.
•Volumetric power densities ranging from 30 to 90W·m−3 of RVC foam•Biofouling on both membranes with 150–300μM thickness after 8months of operation•A total of 77 bacterial 16S rRNA gene sequences recovered on both MFC membranes•Shannon diversity index of 1.330 for PE membrane and 2.032 for Nafion®</description><subject>Air</subject><subject>Bioelectric Energy Sources - microbiology</subject><subject>Biofouling</subject><subject>Chemical and Process Engineering</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Engineering Sciences</subject><subject>Membranes, Artificial</subject><subject>Nonionic membrane</subject><subject>Polyethylene - chemistry</subject><subject>Polyethylene membrane</subject><subject>Reticulated carbon foam</subject><subject>Silicon Dioxide - chemistry</subject><issn>1567-5394</issn><issn>1878-562X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhiMEoqXwF5CPcMjWk8Qfe2wroEgrcQGJm-XYY8WrZL3Y2aLlyh9nopRyRBrJlueZd2b8VhUDvgEO8nq_6WPCEd2A06bhIDacAuSz6hK00rWQzffndBdS1aLddhfVq1L2nHMNSrysLhrJVSuVvKx-38ZUL0pzTotadHZkbrDZuhlz_GXnmA4sBWZjrp2dh-SREZVTH4kMJyQcx7Gwn3Ee1swx5XQq7JjGM87DecQDXpc4kjSbcOqzPSCzhRU8Ups55dfVi2DHgm8ez6vq28cPX-_u692XT5_vbna165Se69aJTjjgLljnVGgDBCeUC64XvvNCYyNDB43XQmr0254yuvMgvN72XQuqvarer7qDHc0xx8nms0k2mvubnVneOGjoWg4PQOy7lT3m9OOEZTZTLMuiNDwtZ0AB0DiNbgnVK0qrl5IxPGkDN4tdZm_-2WUWuwynAEmlbx-7nPoJ_VPhX38IuF0BpH95iJhNcREPDn3M5JnxKf6_yx_2rK8-</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Kircheva, Nina</creator><creator>Outin, Jonathan</creator><creator>Perrier, Gérard</creator><creator>Ramousse, Julien</creator><creator>Merlin, Gérard</creator><creator>Lyautey, Emilie</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6274-8087</orcidid><orcidid>https://orcid.org/0000-0003-0754-197X</orcidid><orcidid>https://orcid.org/0000-0001-7367-7440</orcidid></search><sort><creationdate>20151201</creationdate><title>Bio-electrochemical characterization of air-cathode microbial fuel cells with microporous polyethylene/silica membrane as separator</title><author>Kircheva, Nina ; Outin, Jonathan ; Perrier, Gérard ; Ramousse, Julien ; Merlin, Gérard ; Lyautey, Emilie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-3c545c10cfacc7f3f1fc57cfcb5d4d58e26f412d8568ed9bcfc84d15d89b43173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Air</topic><topic>Bioelectric Energy Sources - microbiology</topic><topic>Biofouling</topic><topic>Chemical and Process Engineering</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Engineering Sciences</topic><topic>Membranes, Artificial</topic><topic>Nonionic membrane</topic><topic>Polyethylene - chemistry</topic><topic>Polyethylene membrane</topic><topic>Reticulated carbon foam</topic><topic>Silicon Dioxide - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kircheva, Nina</creatorcontrib><creatorcontrib>Outin, Jonathan</creatorcontrib><creatorcontrib>Perrier, Gérard</creatorcontrib><creatorcontrib>Ramousse, Julien</creatorcontrib><creatorcontrib>Merlin, Gérard</creatorcontrib><creatorcontrib>Lyautey, Emilie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kircheva, Nina</au><au>Outin, Jonathan</au><au>Perrier, Gérard</au><au>Ramousse, Julien</au><au>Merlin, Gérard</au><au>Lyautey, Emilie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-electrochemical characterization of air-cathode microbial fuel cells with microporous polyethylene/silica membrane as separator</atitle><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle><addtitle>Bioelectrochemistry</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>106</volume><issue>Pt A</issue><spage>115</spage><epage>124</epage><pages>115-124</pages><issn>1567-5394</issn><eissn>1878-562X</eissn><abstract>The aim of this work was to study the behavior over time of a separator made of a low-cost and non-selective microporous polyethylene membrane (RhinoHide®) in an air-cathode microbial fuel cell with a reticulated vitreous carbon foam bioanode. Performances of the microporous polyethylene membrane (RhinoHide®) were compared with Nafion®-117 as a cationic exchange membrane. A non-parametric test (Mann–Whitney) done on the different sets of coulombic or energy efficiency data showed no significant difference between the two types of tested membrane (p<0.05). Volumetric power densities were ranging from 30 to 90W·m−3 of RVC foam for both membranes. Similar amounts of biomass were observed on both sides of the polyethylene membrane illustrating bacterial permeability of this type of separator. A monospecific denitrifying population on cathodic side of RhinoHide® membrane has been identified. Electrochemical impedance spectroscopy (EIS) was used at OCV conditions to characterize electrochemical behavior of MFCs by equivalent electrical circuit fitted on both Nyquist and Bode plots. Resistances and pseudo-capacitances from EIS analyses do not differ in such a way that the nature of the membrane could be considered as responsible.
•Volumetric power densities ranging from 30 to 90W·m−3 of RVC foam•Biofouling on both membranes with 150–300μM thickness after 8months of operation•A total of 77 bacterial 16S rRNA gene sequences recovered on both MFC membranes•Shannon diversity index of 1.330 for PE membrane and 2.032 for Nafion®</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>26073676</pmid><doi>10.1016/j.bioelechem.2015.05.016</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6274-8087</orcidid><orcidid>https://orcid.org/0000-0003-0754-197X</orcidid><orcidid>https://orcid.org/0000-0001-7367-7440</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1567-5394 |
ispartof | Bioelectrochemistry (Amsterdam, Netherlands), 2015-12, Vol.106 (Pt A), p.115-124 |
issn | 1567-5394 1878-562X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01814301v1 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Air Bioelectric Energy Sources - microbiology Biofouling Chemical and Process Engineering Electrochemical impedance spectroscopy Electrochemistry Electrodes Engineering Sciences Membranes, Artificial Nonionic membrane Polyethylene - chemistry Polyethylene membrane Reticulated carbon foam Silicon Dioxide - chemistry |
title | Bio-electrochemical characterization of air-cathode microbial fuel cells with microporous polyethylene/silica membrane as separator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-electrochemical%20characterization%20of%20air-cathode%20microbial%20fuel%20cells%20with%20microporous%20polyethylene/silica%20membrane%20as%20separator&rft.jtitle=Bioelectrochemistry%20(Amsterdam,%20Netherlands)&rft.au=Kircheva,%20Nina&rft.date=2015-12-01&rft.volume=106&rft.issue=Pt%20A&rft.spage=115&rft.epage=124&rft.pages=115-124&rft.issn=1567-5394&rft.eissn=1878-562X&rft_id=info:doi/10.1016/j.bioelechem.2015.05.016&rft_dat=%3Cproquest_hal_p%3E1711545283%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1711545283&rft_id=info:pmid/26073676&rft_els_id=S1567539415000742&rfr_iscdi=true |