Bio-electrochemical characterization of air-cathode microbial fuel cells with microporous polyethylene/silica membrane as separator
The aim of this work was to study the behavior over time of a separator made of a low-cost and non-selective microporous polyethylene membrane (RhinoHide®) in an air-cathode microbial fuel cell with a reticulated vitreous carbon foam bioanode. Performances of the microporous polyethylene membrane (R...
Gespeichert in:
Veröffentlicht in: | Bioelectrochemistry (Amsterdam, Netherlands) Netherlands), 2015-12, Vol.106 (Pt A), p.115-124 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this work was to study the behavior over time of a separator made of a low-cost and non-selective microporous polyethylene membrane (RhinoHide®) in an air-cathode microbial fuel cell with a reticulated vitreous carbon foam bioanode. Performances of the microporous polyethylene membrane (RhinoHide®) were compared with Nafion®-117 as a cationic exchange membrane. A non-parametric test (Mann–Whitney) done on the different sets of coulombic or energy efficiency data showed no significant difference between the two types of tested membrane (p |
---|---|
ISSN: | 1567-5394 1878-562X |
DOI: | 10.1016/j.bioelechem.2015.05.016 |