Effect of physical aging on Johari-Goldstein relaxation in La-based bulk metallic glass
The influence of physical aging on the β relaxation in La60Ni15Al25 bulk metallic glass has been investigated by mechanical spectroscopy. The amplitude of the β relaxation (ΔG″) decreases while its relaxation time (τ(β)) increases during aging. We find that, as in organic glasses, the changes of ln ...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2014-09, Vol.141 (10), p.104510-104510 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The influence of physical aging on the β relaxation in La60Ni15Al25 bulk metallic glass has been investigated by mechanical spectroscopy. The amplitude of the β relaxation (ΔG″) decreases while its relaxation time (τ(β)) increases during aging. We find that, as in organic glasses, the changes of ln (τ(β)) and ln (ΔG(max) ) are linearly correlated with ln (τ(β)) = b - a ln (G(max)″). This behavior is discussed in term of the asymmetric double-well potential (ADWP) model, with U and Δ the energies characterizing the ADWP. It is suggested that during aging the ratio U/Δ remains approximately constant, with a value close to the coefficient describing the linear correlation between ln (τ(β)) and ln (G(max)″)(U/Δ ~ a). Moreover, the evolution versus aging time of ΔG(max) can be described by a simple stretched exponential equation giving values of τ(aging) consistent with tan(δ) measurements during aging. The very similar behavior of the β relaxation during aging in metallic glasses and organic material strongly suggests a common nature for this relaxation. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.4895396 |