Bismuth vanadate-based semiconductor photocatalysts: a short critical review on the efficiency and the mechanism of photodegradation of organic pollutants

The number of publications on photocatalytic bismuth vanadate-based materials is constantly increasing. Indeed, bismuth vanadate is gaining stronger interest in the photochemical community since it is a solar-driven photocatalyst. However, the efficiency of BiVO 4 -based photocatalyst under sunlight...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2018-07, Vol.25 (20), p.19362-19379
Hauptverfasser: Monfort, Olivier, Plesch, Gustav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The number of publications on photocatalytic bismuth vanadate-based materials is constantly increasing. Indeed, bismuth vanadate is gaining stronger interest in the photochemical community since it is a solar-driven photocatalyst. However, the efficiency of BiVO 4 -based photocatalyst under sunlight is questionable: in most of the studies investigating the photodegradation of organic pollutants, only few works identify the by-products and evaluate the real efficiency of BiVO 4 -based materials. This short review aims to (i) present briefly the principles of photocatalysis and define the photocatalytic efficiency and (ii) discuss the formation of reactive species involved in the photocatalytic degradation process of pollutants and thus the corresponding photodegradation mechanism could be determined. All these points are developed in a comprehensive discussion by focusing especially on pure, doped, and composite BiVO 4 . Therefore, this review exhibits a critical overview on different BiVO 4 -based photocatalytic systems with their real efficiency. This is a necessary knowledge for potential implementation of BiVO 4 materials in environmental applications at larger scale than laboratory conditions.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-018-2437-9