High temperature deformation behaviors of the Zr63.36Cu14.52Ni10.12Al12 bulk metallic glass
A systematic study on the thermal properties, deformation behaviors, and thermal workability of Zr₆₃.₃₆Cu₁₄.₅₂Ni₁₀.₁₂Al₁₂ bulk metallic glass (BMG) was conducted in the supercooled liquid region (SLR) with strain rates ranging from 2.5 × 10⁻⁴ to 5 × 10⁻³ s⁻¹. The strain-rate jump experimental result...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2016-04, Vol.51 (8), p.4079-4087 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A systematic study on the thermal properties, deformation behaviors, and thermal workability of Zr₆₃.₃₆Cu₁₄.₅₂Ni₁₀.₁₂Al₁₂ bulk metallic glass (BMG) was conducted in the supercooled liquid region (SLR) with strain rates ranging from 2.5 × 10⁻⁴ to 5 × 10⁻³ s⁻¹. The strain-rate jump experimental results show that the homogeneous deformation behavior transforms from non-Newtonian flow to Newtonian flow with decreasing strain rate as well as elevating temperature. In the framework of the Kissinger and free-volume model, this phenomenon can be explained by the transition state theory. The values of the activation volume and activation energy of the BMG are obtained, which are consistent with other BMGs. The optimum domain for thermal workability of the metallic glass has been located by the power dissipation efficiency map where the power dissipation efficiency is larger than 0.8. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-016-9729-6 |