On a vector version of a fundamental Lemma of J. L. Lions

Let Ω be a bounded and connected open subset of ℝ N with a Lipschitz-continuous boundary, the set Ω being locally on the same side of ∂Ω. A vector version of a fundamental lemma of J. L. Lions, due to C. Amrouche, the first author, L. Gratie and S. Kesavan, asserts that any vector field v = ( u i )...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese annals of mathematics. Serie B 2018, Vol.39 (1), p.33-46
Hauptverfasser: Ciarlet, Philippe G., Malin, Maria, Mardare, Cristinel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46
container_issue 1
container_start_page 33
container_title Chinese annals of mathematics. Serie B
container_volume 39
creator Ciarlet, Philippe G.
Malin, Maria
Mardare, Cristinel
description Let Ω be a bounded and connected open subset of ℝ N with a Lipschitz-continuous boundary, the set Ω being locally on the same side of ∂Ω. A vector version of a fundamental lemma of J. L. Lions, due to C. Amrouche, the first author, L. Gratie and S. Kesavan, asserts that any vector field v = ( u i ) ∈ (D′(Ω)) N , such that all the components 1 2 ( ∂ j v i + ∂ i v j ) , 1 ≤ i , j ≤ N , of its symmetrized gradient matrix field are in the space H −1 (Ω), is in effect in the space (L 2 (Ω)) N . The objective of this paper is to show that this vector version of J. L. Lions lemma is equivalent to a certain number of other properties of interest by themselves. These include in particular a vector version of a well-known inequality due to J. Nečas, weak versions of the classical Donati and Saint-Venant compatibility conditions for a matrix field to be the symmetrized gradient matrix field of a vector field, or a natural vector version of a fundamental surjectivity property of the divergence operator.
doi_str_mv 10.1007/s11401-018-1049-5
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01803505v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1985157132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-e4ca24ed5b9c2c275a1224aa61060ef50ac60ab50f3e71d07c2bbaef6254026b3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWP98AG8LnjykzmQ32eZYilploRc9h9k0qy3dTU22Bb-9WVbEizAw8Pi9N8lj7AZhigDlfUQsADngjCMUmssTNsGZAq6EwlM2ASEF11Lrc3YR4xYAi1LChOlVl1F2dLb3Ia0QN77LfJO05tCtqXVdT7uscm1Lg_wyzao0CYpX7KyhXXTXP_uSvT0-vC6WvFo9PS_mFbe5hJ67wpIo3FrW2gorSkkoREGkEBS4RgJZBVRLaHJX4hpKK-qaXKOELECoOr9kd2PuB-3MPmxaCl_G08Ys55UZtPRnSKfkERN7O7L74D8PLvZm6w-hS88zqGcSZYm5SBSOlA0-xuCa31gEM7RpxjaHZDO0aWTyiNETE9u9u_An-V_TN2-Ac6c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1985157132</pqid></control><display><type>article</type><title>On a vector version of a fundamental Lemma of J. L. Lions</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ciarlet, Philippe G. ; Malin, Maria ; Mardare, Cristinel</creator><creatorcontrib>Ciarlet, Philippe G. ; Malin, Maria ; Mardare, Cristinel</creatorcontrib><description>Let Ω be a bounded and connected open subset of ℝ N with a Lipschitz-continuous boundary, the set Ω being locally on the same side of ∂Ω. A vector version of a fundamental lemma of J. L. Lions, due to C. Amrouche, the first author, L. Gratie and S. Kesavan, asserts that any vector field v = ( u i ) ∈ (D′(Ω)) N , such that all the components 1 2 ( ∂ j v i + ∂ i v j ) , 1 ≤ i , j ≤ N , of its symmetrized gradient matrix field are in the space H −1 (Ω), is in effect in the space (L 2 (Ω)) N . The objective of this paper is to show that this vector version of J. L. Lions lemma is equivalent to a certain number of other properties of interest by themselves. These include in particular a vector version of a well-known inequality due to J. Nečas, weak versions of the classical Donati and Saint-Venant compatibility conditions for a matrix field to be the symmetrized gradient matrix field of a vector field, or a natural vector version of a fundamental surjectivity property of the divergence operator.</description><identifier>ISSN: 0252-9599</identifier><identifier>EISSN: 1860-6261</identifier><identifier>DOI: 10.1007/s11401-018-1049-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis of PDEs ; Applications of Mathematics ; Divergence ; Functional Analysis ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Matrix algebra ; Matrix methods ; Production planning</subject><ispartof>Chinese annals of mathematics. Serie B, 2018, Vol.39 (1), p.33-46</ispartof><rights>Fudan University and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-e4ca24ed5b9c2c275a1224aa61060ef50ac60ab50f3e71d07c2bbaef6254026b3</citedby><cites>FETCH-LOGICAL-c350t-e4ca24ed5b9c2c275a1224aa61060ef50ac60ab50f3e71d07c2bbaef6254026b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11401-018-1049-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11401-018-1049-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,4023,27922,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01803505$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ciarlet, Philippe G.</creatorcontrib><creatorcontrib>Malin, Maria</creatorcontrib><creatorcontrib>Mardare, Cristinel</creatorcontrib><title>On a vector version of a fundamental Lemma of J. L. Lions</title><title>Chinese annals of mathematics. Serie B</title><addtitle>Chin. Ann. Math. Ser. B</addtitle><description>Let Ω be a bounded and connected open subset of ℝ N with a Lipschitz-continuous boundary, the set Ω being locally on the same side of ∂Ω. A vector version of a fundamental lemma of J. L. Lions, due to C. Amrouche, the first author, L. Gratie and S. Kesavan, asserts that any vector field v = ( u i ) ∈ (D′(Ω)) N , such that all the components 1 2 ( ∂ j v i + ∂ i v j ) , 1 ≤ i , j ≤ N , of its symmetrized gradient matrix field are in the space H −1 (Ω), is in effect in the space (L 2 (Ω)) N . The objective of this paper is to show that this vector version of J. L. Lions lemma is equivalent to a certain number of other properties of interest by themselves. These include in particular a vector version of a well-known inequality due to J. Nečas, weak versions of the classical Donati and Saint-Venant compatibility conditions for a matrix field to be the symmetrized gradient matrix field of a vector field, or a natural vector version of a fundamental surjectivity property of the divergence operator.</description><subject>Analysis of PDEs</subject><subject>Applications of Mathematics</subject><subject>Divergence</subject><subject>Functional Analysis</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Production planning</subject><issn>0252-9599</issn><issn>1860-6261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWP98AG8LnjykzmQ32eZYilploRc9h9k0qy3dTU22Bb-9WVbEizAw8Pi9N8lj7AZhigDlfUQsADngjCMUmssTNsGZAq6EwlM2ASEF11Lrc3YR4xYAi1LChOlVl1F2dLb3Ia0QN77LfJO05tCtqXVdT7uscm1Lg_wyzao0CYpX7KyhXXTXP_uSvT0-vC6WvFo9PS_mFbe5hJ67wpIo3FrW2gorSkkoREGkEBS4RgJZBVRLaHJX4hpKK-qaXKOELECoOr9kd2PuB-3MPmxaCl_G08Ys55UZtPRnSKfkERN7O7L74D8PLvZm6w-hS88zqGcSZYm5SBSOlA0-xuCa31gEM7RpxjaHZDO0aWTyiNETE9u9u_An-V_TN2-Ac6c</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Ciarlet, Philippe G.</creator><creator>Malin, Maria</creator><creator>Mardare, Cristinel</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>2018</creationdate><title>On a vector version of a fundamental Lemma of J. L. Lions</title><author>Ciarlet, Philippe G. ; Malin, Maria ; Mardare, Cristinel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-e4ca24ed5b9c2c275a1224aa61060ef50ac60ab50f3e71d07c2bbaef6254026b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis of PDEs</topic><topic>Applications of Mathematics</topic><topic>Divergence</topic><topic>Functional Analysis</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Production planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciarlet, Philippe G.</creatorcontrib><creatorcontrib>Malin, Maria</creatorcontrib><creatorcontrib>Mardare, Cristinel</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chinese annals of mathematics. Serie B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ciarlet, Philippe G.</au><au>Malin, Maria</au><au>Mardare, Cristinel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a vector version of a fundamental Lemma of J. L. Lions</atitle><jtitle>Chinese annals of mathematics. Serie B</jtitle><stitle>Chin. Ann. Math. Ser. B</stitle><date>2018</date><risdate>2018</risdate><volume>39</volume><issue>1</issue><spage>33</spage><epage>46</epage><pages>33-46</pages><issn>0252-9599</issn><eissn>1860-6261</eissn><abstract>Let Ω be a bounded and connected open subset of ℝ N with a Lipschitz-continuous boundary, the set Ω being locally on the same side of ∂Ω. A vector version of a fundamental lemma of J. L. Lions, due to C. Amrouche, the first author, L. Gratie and S. Kesavan, asserts that any vector field v = ( u i ) ∈ (D′(Ω)) N , such that all the components 1 2 ( ∂ j v i + ∂ i v j ) , 1 ≤ i , j ≤ N , of its symmetrized gradient matrix field are in the space H −1 (Ω), is in effect in the space (L 2 (Ω)) N . The objective of this paper is to show that this vector version of J. L. Lions lemma is equivalent to a certain number of other properties of interest by themselves. These include in particular a vector version of a well-known inequality due to J. Nečas, weak versions of the classical Donati and Saint-Venant compatibility conditions for a matrix field to be the symmetrized gradient matrix field of a vector field, or a natural vector version of a fundamental surjectivity property of the divergence operator.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11401-018-1049-5</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0252-9599
ispartof Chinese annals of mathematics. Serie B, 2018, Vol.39 (1), p.33-46
issn 0252-9599
1860-6261
language eng
recordid cdi_hal_primary_oai_HAL_hal_01803505v1
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Analysis of PDEs
Applications of Mathematics
Divergence
Functional Analysis
Mathematical analysis
Mathematics
Mathematics and Statistics
Matrix algebra
Matrix methods
Production planning
title On a vector version of a fundamental Lemma of J. L. Lions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A23%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20vector%20version%20of%20a%20fundamental%20Lemma%20of%20J.%20L.%20Lions&rft.jtitle=Chinese%20annals%20of%20mathematics.%20Serie%20B&rft.au=Ciarlet,%20Philippe%20G.&rft.date=2018&rft.volume=39&rft.issue=1&rft.spage=33&rft.epage=46&rft.pages=33-46&rft.issn=0252-9599&rft.eissn=1860-6261&rft_id=info:doi/10.1007/s11401-018-1049-5&rft_dat=%3Cproquest_hal_p%3E1985157132%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1985157132&rft_id=info:pmid/&rfr_iscdi=true