On a vector version of a fundamental Lemma of J. L. Lions

Let Ω be a bounded and connected open subset of ℝ N with a Lipschitz-continuous boundary, the set Ω being locally on the same side of ∂Ω. A vector version of a fundamental lemma of J. L. Lions, due to C. Amrouche, the first author, L. Gratie and S. Kesavan, asserts that any vector field v = ( u i )...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese annals of mathematics. Serie B 2018, Vol.39 (1), p.33-46
Hauptverfasser: Ciarlet, Philippe G., Malin, Maria, Mardare, Cristinel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Ω be a bounded and connected open subset of ℝ N with a Lipschitz-continuous boundary, the set Ω being locally on the same side of ∂Ω. A vector version of a fundamental lemma of J. L. Lions, due to C. Amrouche, the first author, L. Gratie and S. Kesavan, asserts that any vector field v = ( u i ) ∈ (D′(Ω)) N , such that all the components 1 2 ( ∂ j v i + ∂ i v j ) , 1 ≤ i , j ≤ N , of its symmetrized gradient matrix field are in the space H −1 (Ω), is in effect in the space (L 2 (Ω)) N . The objective of this paper is to show that this vector version of J. L. Lions lemma is equivalent to a certain number of other properties of interest by themselves. These include in particular a vector version of a well-known inequality due to J. Nečas, weak versions of the classical Donati and Saint-Venant compatibility conditions for a matrix field to be the symmetrized gradient matrix field of a vector field, or a natural vector version of a fundamental surjectivity property of the divergence operator.
ISSN:0252-9599
1860-6261
DOI:10.1007/s11401-018-1049-5