Driving unmodeled gravitational-wave transient searches using astrophysical information

Transient gravitational-wave searches can be divided into two main families of approaches: modeled and unmodeled searches, based on matched filtering techniques and time-frequency excess power identification respectively. The former, mostly applied in the context of compact binary searches, relies o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2018-07, Vol.98 (2), Article 024028
Hauptverfasser: Bacon, P., Gayathri, V., Chassande-Mottin, E., Pai, A., Salemi, F., Vedovato, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Physical review. D
container_volume 98
creator Bacon, P.
Gayathri, V.
Chassande-Mottin, E.
Pai, A.
Salemi, F.
Vedovato, G.
description Transient gravitational-wave searches can be divided into two main families of approaches: modeled and unmodeled searches, based on matched filtering techniques and time-frequency excess power identification respectively. The former, mostly applied in the context of compact binary searches, relies on the precise knowledge of the expected gravitational-wave phase evolution. This information is not always available at the required accuracy for all plausible astrophysical scenarios, e.g., in the presence of orbital precession, or eccentricity. The other search approach imposes little priors on the targeted signal. We propose an intermediate route based on a modification of unmodeled search methods in which time-frequency pattern matching is constrained by astrophysical waveform models (but not requiring accurate prediction for the waveform phase evolution). The set of astrophysically motivated patterns is conveniently encapsulated in a graph, that encodes the time-frequency pixels and their co-occurrence. This allows the use of efficient graph-based optimization techniques to perform the pattern search in the data. We show in the example of black-hole binary searches that such an approach leads to an averaged increase in the distance reach (+7–8%) for this specific source over standard unmodeled searches.
doi_str_mv 10.1103/PhysRevD.98.024028
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01801881v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126925470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-8ff1de497bef976bba14d7d18467d346ccf12f8f309b9277743f0af4025df9233</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMoOHT_gE8Fn3zozKVZkzyOTZ0wUETxMaRtsmV0zUzayv57M6uDg_s4fvcd9yF0A3gCgLP7180hvOl-MRF8ggnFhJ-hEaEMpxgTcX7SgC_ROIQtjjLHggGM0OfC294266Rrdq7Sta6StVe9bVVrXaPq9Fv1Omm9aoLVTZsErXy50SHpwnFLhda7fbxvS1UntjHO7343r9GFUXXQ479-hT4eH97ny3T18vQ8n63SMsOiTbkxUGkqWKGNYHlRKKAVq4DTnFUZzcvSADHcRLgQhDFGM4OViT9OKyNIll2hu8F3o2q593an_EE6ZeVytpLHGQYei0MPkb0d2L13X50Ordy6zscngyRAckGmMadIkYEqvQvBa3OyBSyPecv_vKXgcsg7-wEwaHXb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126925470</pqid></control><display><type>article</type><title>Driving unmodeled gravitational-wave transient searches using astrophysical information</title><source>American Physical Society Journals</source><creator>Bacon, P. ; Gayathri, V. ; Chassande-Mottin, E. ; Pai, A. ; Salemi, F. ; Vedovato, G.</creator><creatorcontrib>Bacon, P. ; Gayathri, V. ; Chassande-Mottin, E. ; Pai, A. ; Salemi, F. ; Vedovato, G.</creatorcontrib><description>Transient gravitational-wave searches can be divided into two main families of approaches: modeled and unmodeled searches, based on matched filtering techniques and time-frequency excess power identification respectively. The former, mostly applied in the context of compact binary searches, relies on the precise knowledge of the expected gravitational-wave phase evolution. This information is not always available at the required accuracy for all plausible astrophysical scenarios, e.g., in the presence of orbital precession, or eccentricity. The other search approach imposes little priors on the targeted signal. We propose an intermediate route based on a modification of unmodeled search methods in which time-frequency pattern matching is constrained by astrophysical waveform models (but not requiring accurate prediction for the waveform phase evolution). The set of astrophysically motivated patterns is conveniently encapsulated in a graph, that encodes the time-frequency pixels and their co-occurrence. This allows the use of efficient graph-based optimization techniques to perform the pattern search in the data. We show in the example of black-hole binary searches that such an approach leads to an averaged increase in the distance reach (+7–8%) for this specific source over standard unmodeled searches.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.98.024028</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Astronomical models ; Binary stars ; Eccentric orbits ; Evolution ; Filtration ; Gravitation ; Gravitational waves ; Instrumentation and Detectors ; Optimization techniques ; Pattern matching ; Pattern search ; Physics ; Searching</subject><ispartof>Physical review. D, 2018-07, Vol.98 (2), Article 024028</ispartof><rights>Copyright American Physical Society Jul 15, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-8ff1de497bef976bba14d7d18467d346ccf12f8f309b9277743f0af4025df9233</citedby><cites>FETCH-LOGICAL-c309t-8ff1de497bef976bba14d7d18467d346ccf12f8f309b9277743f0af4025df9233</cites><orcidid>0000-0003-1350-2037 ; 0000-0003-3768-9908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01801881$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bacon, P.</creatorcontrib><creatorcontrib>Gayathri, V.</creatorcontrib><creatorcontrib>Chassande-Mottin, E.</creatorcontrib><creatorcontrib>Pai, A.</creatorcontrib><creatorcontrib>Salemi, F.</creatorcontrib><creatorcontrib>Vedovato, G.</creatorcontrib><title>Driving unmodeled gravitational-wave transient searches using astrophysical information</title><title>Physical review. D</title><description>Transient gravitational-wave searches can be divided into two main families of approaches: modeled and unmodeled searches, based on matched filtering techniques and time-frequency excess power identification respectively. The former, mostly applied in the context of compact binary searches, relies on the precise knowledge of the expected gravitational-wave phase evolution. This information is not always available at the required accuracy for all plausible astrophysical scenarios, e.g., in the presence of orbital precession, or eccentricity. The other search approach imposes little priors on the targeted signal. We propose an intermediate route based on a modification of unmodeled search methods in which time-frequency pattern matching is constrained by astrophysical waveform models (but not requiring accurate prediction for the waveform phase evolution). The set of astrophysically motivated patterns is conveniently encapsulated in a graph, that encodes the time-frequency pixels and their co-occurrence. This allows the use of efficient graph-based optimization techniques to perform the pattern search in the data. We show in the example of black-hole binary searches that such an approach leads to an averaged increase in the distance reach (+7–8%) for this specific source over standard unmodeled searches.</description><subject>Astronomical models</subject><subject>Binary stars</subject><subject>Eccentric orbits</subject><subject>Evolution</subject><subject>Filtration</subject><subject>Gravitation</subject><subject>Gravitational waves</subject><subject>Instrumentation and Detectors</subject><subject>Optimization techniques</subject><subject>Pattern matching</subject><subject>Pattern search</subject><subject>Physics</subject><subject>Searching</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kNFLwzAQxoMoOHT_gE8Fn3zozKVZkzyOTZ0wUETxMaRtsmV0zUzayv57M6uDg_s4fvcd9yF0A3gCgLP7180hvOl-MRF8ggnFhJ-hEaEMpxgTcX7SgC_ROIQtjjLHggGM0OfC294266Rrdq7Sta6StVe9bVVrXaPq9Fv1Omm9aoLVTZsErXy50SHpwnFLhda7fbxvS1UntjHO7343r9GFUXXQ479-hT4eH97ny3T18vQ8n63SMsOiTbkxUGkqWKGNYHlRKKAVq4DTnFUZzcvSADHcRLgQhDFGM4OViT9OKyNIll2hu8F3o2q593an_EE6ZeVytpLHGQYei0MPkb0d2L13X50Ordy6zscngyRAckGmMadIkYEqvQvBa3OyBSyPecv_vKXgcsg7-wEwaHXb</recordid><startdate>20180715</startdate><enddate>20180715</enddate><creator>Bacon, P.</creator><creator>Gayathri, V.</creator><creator>Chassande-Mottin, E.</creator><creator>Pai, A.</creator><creator>Salemi, F.</creator><creator>Vedovato, G.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1350-2037</orcidid><orcidid>https://orcid.org/0000-0003-3768-9908</orcidid></search><sort><creationdate>20180715</creationdate><title>Driving unmodeled gravitational-wave transient searches using astrophysical information</title><author>Bacon, P. ; Gayathri, V. ; Chassande-Mottin, E. ; Pai, A. ; Salemi, F. ; Vedovato, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-8ff1de497bef976bba14d7d18467d346ccf12f8f309b9277743f0af4025df9233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Astronomical models</topic><topic>Binary stars</topic><topic>Eccentric orbits</topic><topic>Evolution</topic><topic>Filtration</topic><topic>Gravitation</topic><topic>Gravitational waves</topic><topic>Instrumentation and Detectors</topic><topic>Optimization techniques</topic><topic>Pattern matching</topic><topic>Pattern search</topic><topic>Physics</topic><topic>Searching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bacon, P.</creatorcontrib><creatorcontrib>Gayathri, V.</creatorcontrib><creatorcontrib>Chassande-Mottin, E.</creatorcontrib><creatorcontrib>Pai, A.</creatorcontrib><creatorcontrib>Salemi, F.</creatorcontrib><creatorcontrib>Vedovato, G.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bacon, P.</au><au>Gayathri, V.</au><au>Chassande-Mottin, E.</au><au>Pai, A.</au><au>Salemi, F.</au><au>Vedovato, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Driving unmodeled gravitational-wave transient searches using astrophysical information</atitle><jtitle>Physical review. D</jtitle><date>2018-07-15</date><risdate>2018</risdate><volume>98</volume><issue>2</issue><artnum>024028</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Transient gravitational-wave searches can be divided into two main families of approaches: modeled and unmodeled searches, based on matched filtering techniques and time-frequency excess power identification respectively. The former, mostly applied in the context of compact binary searches, relies on the precise knowledge of the expected gravitational-wave phase evolution. This information is not always available at the required accuracy for all plausible astrophysical scenarios, e.g., in the presence of orbital precession, or eccentricity. The other search approach imposes little priors on the targeted signal. We propose an intermediate route based on a modification of unmodeled search methods in which time-frequency pattern matching is constrained by astrophysical waveform models (but not requiring accurate prediction for the waveform phase evolution). The set of astrophysically motivated patterns is conveniently encapsulated in a graph, that encodes the time-frequency pixels and their co-occurrence. This allows the use of efficient graph-based optimization techniques to perform the pattern search in the data. We show in the example of black-hole binary searches that such an approach leads to an averaged increase in the distance reach (+7–8%) for this specific source over standard unmodeled searches.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.98.024028</doi><orcidid>https://orcid.org/0000-0003-1350-2037</orcidid><orcidid>https://orcid.org/0000-0003-3768-9908</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2018-07, Vol.98 (2), Article 024028
issn 2470-0010
2470-0029
language eng
recordid cdi_hal_primary_oai_HAL_hal_01801881v1
source American Physical Society Journals
subjects Astronomical models
Binary stars
Eccentric orbits
Evolution
Filtration
Gravitation
Gravitational waves
Instrumentation and Detectors
Optimization techniques
Pattern matching
Pattern search
Physics
Searching
title Driving unmodeled gravitational-wave transient searches using astrophysical information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Driving%20unmodeled%20gravitational-wave%20transient%20searches%20using%20astrophysical%20information&rft.jtitle=Physical%20review.%20D&rft.au=Bacon,%20P.&rft.date=2018-07-15&rft.volume=98&rft.issue=2&rft.artnum=024028&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.98.024028&rft_dat=%3Cproquest_hal_p%3E2126925470%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126925470&rft_id=info:pmid/&rfr_iscdi=true