Driving unmodeled gravitational-wave transient searches using astrophysical information
Transient gravitational-wave searches can be divided into two main families of approaches: modeled and unmodeled searches, based on matched filtering techniques and time-frequency excess power identification respectively. The former, mostly applied in the context of compact binary searches, relies o...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2018-07, Vol.98 (2), Article 024028 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Transient gravitational-wave searches can be divided into two main families of approaches: modeled and unmodeled searches, based on matched filtering techniques and time-frequency excess power identification respectively. The former, mostly applied in the context of compact binary searches, relies on the precise knowledge of the expected gravitational-wave phase evolution. This information is not always available at the required accuracy for all plausible astrophysical scenarios, e.g., in the presence of orbital precession, or eccentricity. The other search approach imposes little priors on the targeted signal. We propose an intermediate route based on a modification of unmodeled search methods in which time-frequency pattern matching is constrained by astrophysical waveform models (but not requiring accurate prediction for the waveform phase evolution). The set of astrophysically motivated patterns is conveniently encapsulated in a graph, that encodes the time-frequency pixels and their co-occurrence. This allows the use of efficient graph-based optimization techniques to perform the pattern search in the data. We show in the example of black-hole binary searches that such an approach leads to an averaged increase in the distance reach (+7–8%) for this specific source over standard unmodeled searches. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.98.024028 |