System Risk Importance Analysis Using Bayesian Networks
Importance measures (IMs) are used for risk-informed decision making in system operations, safety, and maintenance. Traditionally, they are computed within fault tree (FT) analysis. Although FT analysis is a powerful tool to study the reliability and structural characteristics of systems, Bayesian n...
Gespeichert in:
Veröffentlicht in: | International journal of reliability, quality, and safety engineering quality, and safety engineering, 2018-02, Vol.25 (1), p.1850004 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Importance measures (IMs) are used for risk-informed decision making in system operations, safety, and maintenance. Traditionally, they are computed within fault tree (FT) analysis. Although FT analysis is a powerful tool to study the reliability and structural characteristics of systems, Bayesian networks (BNs) have shown explicit advantages in modeling and analytical capabilities. In this paper, the traditional definitions of IMs are extended to BNs in order to have more capability in terms of system risk modeling and analysis. Implementation results on a case study illustrate the capability of finding the most important components in a system. |
---|---|
ISSN: | 0218-5393 1793-6446 0218-5393 |
DOI: | 10.1142/S0218539318500043 |