Optimal surrogates selection for embedded, hierarchical multilevel aircraft models
This study proposes a methodology that reduces the memory size of hierarchical multilevel embedded models while keeping its structure and satisfying constraints on accuracy and computation time. Based on a choice among surrogates (high dimensional model representation, neural networks, etc.) associa...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2015-10, Vol.51 (4), p.3415-3426 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study proposes a methodology that reduces the memory size of hierarchical multilevel embedded models while keeping its structure and satisfying constraints on accuracy and computation time. Based on a choice among surrogates (high dimensional model representation, neural networks, etc.) associated with each submodel, an overall hierarchical multilevel model that fulfills avionics systems requirements is provided via the resolution of an integer programming problem. This methodology is illustrated on a fuel model used for aircraft performance estimations. |
---|---|
ISSN: | 0018-9251 1557-9603 |
DOI: | 10.1109/TAES.2015.140309 |