Optimal surrogates selection for embedded, hierarchical multilevel aircraft models

This study proposes a methodology that reduces the memory size of hierarchical multilevel embedded models while keeping its structure and satisfying constraints on accuracy and computation time. Based on a choice among surrogates (high dimensional model representation, neural networks, etc.) associa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2015-10, Vol.51 (4), p.3415-3426
Hauptverfasser: Bondouy, Manon, Jan, Sophie, Laporte, Serge, Bes, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study proposes a methodology that reduces the memory size of hierarchical multilevel embedded models while keeping its structure and satisfying constraints on accuracy and computation time. Based on a choice among surrogates (high dimensional model representation, neural networks, etc.) associated with each submodel, an overall hierarchical multilevel model that fulfills avionics systems requirements is provided via the resolution of an integer programming problem. This methodology is illustrated on a fuel model used for aircraft performance estimations.
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2015.140309