Physical continuity of the perimysium from myofibers to tendons: Involvement in lateral force transmission in skeletal muscle

Advances in muscle physiology suggest that the perimysium plays a role in the transmission of lateral contractile forces. This hypothesis is strongly supported by our recent demonstration of the existence of “Perimysial Junctional Plates” in bovine Flexor carpi radialis muscle [Passerieux, E., Rossi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural biology 2007-07, Vol.159 (1), p.19-28
Hauptverfasser: Passerieux, E., Rossignol, R., Letellier, T., Delage, J.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advances in muscle physiology suggest that the perimysium plays a role in the transmission of lateral contractile forces. This hypothesis is strongly supported by our recent demonstration of the existence of “Perimysial Junctional Plates” in bovine Flexor carpi radialis muscle [Passerieux, E., Rossignol, R., Chopard, A., Carnino, A., Marini, J.F., Letellier, T., Delage, J.P. 2006. Structural organization of the perimysium in bovine skeletal muscle: junctional plates and associated intracellular subdomains. J. Struct. Biol. 154 (2), 206--216] However, the overall organization of the perimysium collagen network, as well as its continuity and heterogeneity, have still not been described in detail throughout the entire muscle. We used an extension of the standard NaOH digestion technique and scanning electron microscopy to analyze perimysium architecture in bovine Flexor carpi radialis muscle. First, we observed that the perimysium is made of a highly ordered network of collagen fibers, binding the myofibers from tendon to tendon. We identified basic collagen cable structures, characterized by a straight portion (3 cm long) in the direction of the myofibers and a curved terminal portion at 60°. These cables reach the myofiber surface at the level of the previously described “Perimysial Junctional Plates”. At a higher level of organization, these cables stick together to form the walls of numerous tubes arranged in a overlapping honeycomb pattern around the myofibers. At the ends of these tubes, the straight portions of the collagen cables ramify in large bundles that merge with the tendons. Taken together, these observations identify four levels of organization in the perimysium: (i) Perimysial Junctional Plates that constitute the focal attachment between the perimysium and the myofibers, (ii) collagen plexi attaching adjacent myofibers, (iii) a loose lattice of large interwoven fibers, and (iv) honeycomb tubes connecting two tendons. This spatial arrangement of the perimysium supports the view of a complex pattern of lateral force transmission from myofibers to tendons and adjacent muscles.
ISSN:1047-8477
1095-8657
DOI:10.1016/j.jsb.2007.01.022