Elastic coupling between layers in two-dimensional materials
Two-dimensional materials, such as graphene and MoS 2 , are films of a few atomic layers in thickness with strong in-plane bonds and weak interactions between the layers. The in-plane elasticity has been widely studied in bending experiments where a suspended film is deformed substantially; however,...
Gespeichert in:
Veröffentlicht in: | Nature materials 2015-07, Vol.14 (7), p.714-720 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two-dimensional materials, such as graphene and MoS
2
, are films of a few atomic layers in thickness with strong in-plane bonds and weak interactions between the layers. The in-plane elasticity has been widely studied in bending experiments where a suspended film is deformed substantially; however, little is known about the films’ elastic modulus perpendicular to the planes, as the measurement of the out-of-plane elasticity of supported 2D films requires indentation depths smaller than the films’ interlayer distance. Here, we report on sub-ångström-resolution indentation measurements of the perpendicular-to-the-plane elasticity of 2D materials. Our indentation data, combined with semi-analytical models and density functional theory, are then used to study the perpendicular elasticity of few-layer-thick graphene and graphene oxide films. We find that the perpendicular Young’s modulus of graphene oxide films reaches a maximum when one complete water layer is intercalated between the graphitic planes. This non-destructive methodology can map interlayer coupling and intercalation in 2D films.
Sub-ångström-resolution indentation measurements and semi-analytical methods indicate that, for few-layer-thick films, the elasticity perpendicular to the plane is sensitive to the films’ structure and the presence of intercalated molecules. |
---|---|
ISSN: | 1476-1122 1476-4660 |
DOI: | 10.1038/nmat4322 |