Mesenchymal Stem Cells Derived from Human Bone Marrow and Adipose Tissue Maintain Their Immunosuppressive Properties After Chondrogenic Differentiation: Role of HLA-G
Mesenchymal stem cells (MSC) have emerged as alternative sources of stem cells for regenerative medicine because of their multipotency and strong immune-regulatory properties. Also, human leukocyte antigen G (HLA-G) is an important mediator of MSC-mediated immunomodulation. However, it is unclear wh...
Gespeichert in:
Veröffentlicht in: | Stem cells and development 2016-10, Vol.25 (19), p.1454-1469 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mesenchymal stem cells (MSC) have emerged as alternative sources of stem cells for regenerative medicine because of their multipotency and strong immune-regulatory properties. Also, human leukocyte antigen G (HLA-G) is an important mediator of MSC-mediated immunomodulation. However, it is unclear whether MSC retain their immune-privileged potential after differentiation. As promising candidates for cartilage tissue engineering, the immunogenic and immunomodulatory properties of chondro-differentiated MSC (chondro-MSC) require in-depth exploration. In the present study, we used the alginate/hyaluronic acid (Alg/HA) hydrogel scaffold and induced both bone marrow- and adipose tissue-derived MSC into chondrocytes in three-dimensional condition. Then, MSC before and after chondrocyte differentiation were treated or not with interferon γ and tumor necrosis factor α mimicking inflammatory conditions and were compared side by side using flow cytometry, mixed lymphocyte reaction, and immunostaining assays. Results showed that chondro-MSC were hypoimmunogenic and could exert immunosuppression on HLA-mismatched peripheral blood mononuclear cells as well as undifferentiated MSC did. This alloproliferation inhibition mediated by MSC or chondro-MSC was dose dependent. Meanwhile, chondro-MSC exerted inhibition on natural killer cell-mediated cytolysis. Also, we showed that HLA-G expression was upregulated in chondro-MSC under hypoxia context and could be boosted in allogenic settings. Besides, the Alg/HA hydrogel scaffold was hypoimmunogenic and its addition for supporting MSC chondrocyte differentiation did not modify the immune properties of MSC. Finally, considering their chondro-regenerative potential and their retained immunosuppressive capacity, MSC constitute promising allogenic sources of stem cells for cartilage repair. |
---|---|
ISSN: | 1547-3287 1557-8534 |
DOI: | 10.1089/scd.2016.0022 |