Collision Avoidance Effects on the Mobility of a UAV Swarm Using Chaotic Ant Colony with Model Predictive Control
The recent development of compact and economic small Unmanned Aerial Vehicles (UAVs) permits the development of new UAV swarm applications. In order to enhance the area coverage of such UAV swarms, a novel mobility model has been presented in previous work, combining an Ant Colony algorithm with cha...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & robotic systems 2019-02, Vol.93 (1-2), p.227-243 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The recent development of compact and economic small Unmanned Aerial Vehicles (UAVs) permits the development of new UAV swarm applications. In order to enhance the area coverage of such UAV swarms, a novel mobility model has been presented in previous work, combining an Ant Colony algorithm with chaotic dynamics (CACOC). This work is extending CACOC by a Collision Avoidance (CA) mechanism and testing its efficiency in terms of area coverage by the UAV swarm. For this purpose, CACOC is used to compute UAV target waypoints which are tracked by model predictively controlled UAVs. The UAVs are represented by realistic motion models within the virtual robot experimentation platform (V-Rep). This environment is used to evaluate the performance of the proposed CACOC with CA algorithm in an area exploration scenario with 3 UAVs. Finally, its performance is analyzed using metrics. |
---|---|
ISSN: | 0921-0296 1573-0409 |
DOI: | 10.1007/s10846-018-0822-8 |