Fast Gröbner basis computation and polynomial reduction for generic bivariate ideals
Let A , B ∈ K [ X , Y ] be two bivariate polynomials over an effective field K , and let G be the reduced Gröbner basis of the ideal I : = ⟨ A , B ⟩ generated by A and B with respect to the usual degree lexicographic order. Assuming A and B sufficiently generic, we design a quasi-optimal algorithm f...
Gespeichert in:
Veröffentlicht in: | Applicable algebra in engineering, communication and computing communication and computing, 2019-12, Vol.30 (6), p.509-539 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
A
,
B
∈
K
[
X
,
Y
]
be two bivariate polynomials over an effective field
K
, and let
G
be the reduced Gröbner basis of the ideal
I
:
=
⟨
A
,
B
⟩
generated by
A
and
B
with respect to the usual degree lexicographic order. Assuming
A
and
B
sufficiently generic, we design a quasi-optimal algorithm for the reduction of
P
∈
K
[
X
,
Y
]
modulo
G
, where “quasi-optimal” is meant in terms of the size of the input
A
,
B
,
P
. Immediate applications are an ideal membership test and a multiplication algorithm for the quotient algebra
A
:
=
K
[
X
,
Y
]
/
⟨
A
,
B
⟩
, both in quasi-linear time. Moreover, we show that
G
itself can be computed in quasi-linear time with respect to the output size. |
---|---|
ISSN: | 0938-1279 1432-0622 |
DOI: | 10.1007/s00200-019-00389-9 |