Fast Gröbner basis computation and polynomial reduction for generic bivariate ideals

Let A , B ∈ K [ X , Y ] be two bivariate polynomials over an effective field K , and let G be the reduced Gröbner basis of the ideal I : = ⟨ A , B ⟩ generated by A and B with respect to the usual degree lexicographic order. Assuming A and B sufficiently generic, we design a quasi-optimal algorithm f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applicable algebra in engineering, communication and computing communication and computing, 2019-12, Vol.30 (6), p.509-539
Hauptverfasser: van der Hoeven, Joris, Larrieu, Robin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A , B ∈ K [ X , Y ] be two bivariate polynomials over an effective field K , and let G be the reduced Gröbner basis of the ideal I : = ⟨ A , B ⟩ generated by A and B with respect to the usual degree lexicographic order. Assuming A and B sufficiently generic, we design a quasi-optimal algorithm for the reduction of P ∈ K [ X , Y ] modulo  G , where “quasi-optimal” is meant in terms of the size of the input A ,  B ,  P . Immediate applications are an ideal membership test and a multiplication algorithm for the quotient algebra A : = K [ X , Y ] / ⟨ A , B ⟩ , both in quasi-linear time. Moreover, we show that G itself can be computed in quasi-linear time with respect to the output size.
ISSN:0938-1279
1432-0622
DOI:10.1007/s00200-019-00389-9