The Maximum Labeled Path Problem
In this paper, we study the approximability of the Maximum Labeled Path problem: given a vertex-labeled directed acyclic graph D , find a path in D that collects a maximum number of distinct labels. For any ϵ > 0 , we provide a polynomial time approximation algorithm that computes a solution of v...
Gespeichert in:
Veröffentlicht in: | Algorithmica 2017-05, Vol.78 (1), p.298-318 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the approximability of the Maximum Labeled Path problem: given a vertex-labeled directed acyclic graph
D
, find a path in
D
that collects a maximum number of distinct labels. For any
ϵ
>
0
, we provide a polynomial time approximation algorithm that computes a solution of value at least
O
P
T
1
-
ϵ
and a self-reduction showing that any constant ratio approximation algorithm for this problem can be converted into a PTAS. This last result, combined with the
APX
-hardness of the problem, shows that the problem cannot be approximated within any constant ratio unless
P
=
N
P
. |
---|---|
ISSN: | 0178-4617 1432-0541 |
DOI: | 10.1007/s00453-016-0155-6 |