The Maximum Labeled Path Problem

In this paper, we study the approximability of the Maximum Labeled Path problem: given a vertex-labeled directed acyclic graph D , find a path in D that collects a maximum number of distinct labels. For any ϵ > 0 , we provide a polynomial time approximation algorithm that computes a solution of v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica 2017-05, Vol.78 (1), p.298-318
Hauptverfasser: Couëtoux, Basile, Nakache, Elie, Vaxès, Yann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the approximability of the Maximum Labeled Path problem: given a vertex-labeled directed acyclic graph D , find a path in D that collects a maximum number of distinct labels. For any ϵ > 0 , we provide a polynomial time approximation algorithm that computes a solution of value at least O P T 1 - ϵ and a self-reduction showing that any constant ratio approximation algorithm for this problem can be converted into a PTAS. This last result, combined with the APX -hardness of the problem, shows that the problem cannot be approximated within any constant ratio unless P = N P .
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-016-0155-6