Astrophysical gravitational waves in conformal gravity
We investigate the gravitational radiation from binary systems in conformal gravity (CG) and massive conformal gravity (MCG). CG might explain observed galaxy rotation curves without dark matter, and both models are of interest in the context of quantum gravity. Here we show that gravitational radia...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2018-10, Vol.98 (8), Article 084002 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the gravitational radiation from binary systems in conformal gravity (CG) and massive conformal gravity (MCG). CG might explain observed galaxy rotation curves without dark matter, and both models are of interest in the context of quantum gravity. Here we show that gravitational radiation emitted by compact binaries allows us to strongly constrain both models. We work in Weyl gauge, which fixes the rescaling invariance of the models, and derive the linearized fourth-order equation of motion for the metric, which describes massless and massive modes of propagation. In the limit of a large graviton mass, MCG reduces to general relativity (GR), whereas CG does not. Coordinates are fixed by Teyssandier gauge to show that for a conserved energy-momentum tensor the gravitational radiation is due to the time-dependent quadrupole moment of a nonrelativistic source, and we derive the gravitational energy-momentum tensor for both models. We apply our findings to the case of close binaries on circular orbits, which have been used to indirectly infer the existence of gravitational radiation prior to the direct observation of gravitational waves. As an example, we analyze the binary system PSR J1012+5307, chosen for its small eccentricity. When fixing the graviton mass in CG such that observed galaxy rotation curves could be explained without dark matter, the gravitational radiation from a binary system is much smaller than in GR. Thus in CG one cannot explain the orbital decay of binary systems via gravitational radiation, and replace dark matter simultaneously. In MCG with small masses of the graviton, again one cannot reproduce the orbit of binaries by the emission of gravitational waves. On the other hand, for large graviton masses, the orbital period of compact binaries is in agreement with the data, as MCG reduces to GR in this limit. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.98.084002 |