Multiple Sets Exponential Concentration and Higher Order Eigenvalues
On a generic metric measured space, we introduce a notion of improved concentration of measure that takes into account the parallel enlargement of k distinct sets. We show that the k -th eigenvalues of the metric Laplacian gives exponential improved concentration with k sets. On compact Riemannian m...
Gespeichert in:
Veröffentlicht in: | Potential analysis 2020-02, Vol.52 (2), p.203-221 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | On a generic metric measured space, we introduce a notion of improved concentration of measure that takes into account the parallel enlargement of
k
distinct sets. We show that the
k
-th eigenvalues of the metric Laplacian gives exponential improved concentration with
k
sets. On compact Riemannian manifolds, this allows us to recover estimates on the eigenvalues of the Laplace-Beltrami operator in the spirit of an inequality of [
11
]. |
---|---|
ISSN: | 0926-2601 1572-929X |
DOI: | 10.1007/s11118-018-9743-1 |