Multiple Sets Exponential Concentration and Higher Order Eigenvalues

On a generic metric measured space, we introduce a notion of improved concentration of measure that takes into account the parallel enlargement of k distinct sets. We show that the k -th eigenvalues of the metric Laplacian gives exponential improved concentration with k sets. On compact Riemannian m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Potential analysis 2020-02, Vol.52 (2), p.203-221
Hauptverfasser: Gozlan, Nathaël, Herry, Ronan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:On a generic metric measured space, we introduce a notion of improved concentration of measure that takes into account the parallel enlargement of k distinct sets. We show that the k -th eigenvalues of the metric Laplacian gives exponential improved concentration with k sets. On compact Riemannian manifolds, this allows us to recover estimates on the eigenvalues of the Laplace-Beltrami operator in the spirit of an inequality of [ 11 ].
ISSN:0926-2601
1572-929X
DOI:10.1007/s11118-018-9743-1