Spectroscopic Characterization of the SEI Layer Formed on Lithium Metal Electrodes in Phosphonium Bis(fluorosulfonyl)imide Ionic Liquid Electrolytes

The chemical composition of the solid electrolyte interphase (SEI) layer formed on the surface of lithium metal electrodes cycled in phosphonium bis­(fluorosulfonyl)­imide ionic liquid (IL) electrolytes are characterized by magic angle spinning nuclear magnetic resonance (MAS NMR), X-ray photoelectr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2018-02, Vol.10 (7), p.6719-6729
Hauptverfasser: Girard, Gaetan M. A., Hilder, Matthias, Dupre, Nicolas, Guyomard, Dominique, Nucciarone, Donato, Whitbread, Kristina, Zavorine, Serguei, Moser, Michael, Forsyth, Maria, MacFarlane, Douglas R., Howlett, Patrick C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The chemical composition of the solid electrolyte interphase (SEI) layer formed on the surface of lithium metal electrodes cycled in phosphonium bis­(fluorosulfonyl)­imide ionic liquid (IL) electrolytes are characterized by magic angle spinning nuclear magnetic resonance (MAS NMR), X-ray photoelectron spectroscopy (XPS), fourier transformed infrared spectroscopy, and electrochemical impedance spectroscopy. A multiphase layered structure is revealed, which is shown to remain relatively unchanged during extended cycling (up to 250 cycles at 1.5 mA·cm–2, 3 mA h·cm–2, 50 °C). The main components detected by MAS NMR and XPS after several hundreds of cycles are LiF and breakdown products from the bis­(fluorosulfonyl)­imide anion including Li2S. Similarities in chemical composition are observed in the case of the dilute (0.5 mol·kg–1 of Li salt in IL) and the highly concentrated (3.8 mol·kg–1 of Li salt in IL) electrolyte during cycling. The concentrated system is found to promote the formation of a thicker and more uniform SEI with larger amounts of reduced species from the anion. These SEI features are thought to facilitate more stable and efficient Li cycling and a reduced tendency for dendrite formation.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.7b18183