High frequency monitoring reveals aftershocks in subcritical crack growth

By combining direct imaging and acoustic emission measurements, the subcritical propagation of a crack in a heterogeneous material is analyzed. Both methods show that the fracture proceeds through a succession of discrete events. However, the macroscopic opening of the fracture captured by the image...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2014-03, Vol.112 (11), p.115502-115502, Article 115502
Hauptverfasser: Stojanova, M, Santucci, S, Vanel, L, Ramos, O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By combining direct imaging and acoustic emission measurements, the subcritical propagation of a crack in a heterogeneous material is analyzed. Both methods show that the fracture proceeds through a succession of discrete events. However, the macroscopic opening of the fracture captured by the images results from the accumulation of more-elementary events detected by the acoustics. When the acoustic energy is cumulated over large time scales corresponding to the image acquisition rate, a similar statistics is recovered. High frequency acoustic monitoring reveals aftershocks responsible for a time scale dependent exponent of the power law energy distributions. On the contrary, direct imaging, which is unable to resolve these aftershocks, delivers a misleading exponent value.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.112.115502