Reduced Basis Approximation and a Posteriori Error Estimation for Affinely Parametrized Elliptic Coercive Partial Differential Equations: Application to Transport and Continuum Mechanics
In this paper we consider (hierarchical, Lagrange) reduced basis approximation and a posteriori error estimation for linear functional outputs of affinely parametrized elliptic coercive partial differential equations. The essential ingredients are (primal-dual) Galerkin projection onto a low-dimensi...
Gespeichert in:
Veröffentlicht in: | Archives of computational methods in engineering 2008-09, Vol.15 (3), p.229-275 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 275 |
---|---|
container_issue | 3 |
container_start_page | 229 |
container_title | Archives of computational methods in engineering |
container_volume | 15 |
creator | Rozza, G. Huynh, D. B. P. Patera, A. T. |
description | In this paper we consider (hierarchical, Lagrange) reduced basis approximation and
a posteriori
error estimation for linear functional outputs of affinely parametrized elliptic coercive partial differential equations. The essential ingredients are (primal-dual) Galerkin projection onto a low-dimensional space associated with a smooth “parametric manifold”—dimension reduction; efficient and effective greedy sampling methods for identification of optimal and numerically stable approximations—rapid convergence;
a posteriori
error estimation procedures—rigorous and sharp bounds for the linear-functional outputs of interest; and Offline-Online computational decomposition strategies—minimum
marginal cost
for high performance in the real-time/embedded (e.g., parameter-estimation, control) and many-query (e.g., design optimization, multi-model/scale) contexts. We present illustrative results for heat conduction and convection-diffusion, inviscid flow, and linear elasticity; outputs include transport rates, added mass, and stress intensity factors. |
doi_str_mv | 10.1007/s11831-008-9019-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01722593v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791304421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2179-eb7a43b7305944f34faef6aa7454eabf21ad1f1310fb101c0fb0d9cd28ae91e83</originalsourceid><addsrcrecordid>eNp1kcFOGzEQhldVkZpCH6A3S5w4LPXY3uz6GNKlqRSpEWrP1mR3DEbLOrE3EfAEfWycbEG9cBqP_f2_PPNn2Vfgl8B5-S0CVBJyzqtcc9C5_pBNoKqmOZSV-pjOIFUu-ZR_yj7HeM95obQWk-zvDbW7hlp2hdFFNttsgn90Dzg43zPsW4Zs5eNAwfngWB2CD6yOwythUzuz1vXUPbEVBnygIbjn5Fd3ndsMrmFzT6Fxezo8Dw479t1ZS4H6Y1Nvd0eneJadWOwifflXT7M_1_Xv-SJf_vrxcz5b5o2AUue0LlHJdSl5oZWyUlkkO0UsVaEI11YAtmBBArdr4NCkwlvdtKJC0kCVPM0uRt877MwmpEHCk_HozGK2NIc7DqUQhZZ7SOz5yKalbHcUB3Pvd6FP3zMAIApZCaESBSPVBB9jIPtmC9wcwjFjOCaFYw7hGJ00YtTExPa3FP5zflf0Ats0k8M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1112538224</pqid></control><display><type>article</type><title>Reduced Basis Approximation and a Posteriori Error Estimation for Affinely Parametrized Elliptic Coercive Partial Differential Equations: Application to Transport and Continuum Mechanics</title><source>SpringerNature Journals</source><creator>Rozza, G. ; Huynh, D. B. P. ; Patera, A. T.</creator><creatorcontrib>Rozza, G. ; Huynh, D. B. P. ; Patera, A. T.</creatorcontrib><description>In this paper we consider (hierarchical, Lagrange) reduced basis approximation and
a posteriori
error estimation for linear functional outputs of affinely parametrized elliptic coercive partial differential equations. The essential ingredients are (primal-dual) Galerkin projection onto a low-dimensional space associated with a smooth “parametric manifold”—dimension reduction; efficient and effective greedy sampling methods for identification of optimal and numerically stable approximations—rapid convergence;
a posteriori
error estimation procedures—rigorous and sharp bounds for the linear-functional outputs of interest; and Offline-Online computational decomposition strategies—minimum
marginal cost
for high performance in the real-time/embedded (e.g., parameter-estimation, control) and many-query (e.g., design optimization, multi-model/scale) contexts. We present illustrative results for heat conduction and convection-diffusion, inviscid flow, and linear elasticity; outputs include transport rates, added mass, and stress intensity factors.</description><identifier>ISSN: 1134-3060</identifier><identifier>EISSN: 1886-1784</identifier><identifier>DOI: 10.1007/s11831-008-9019-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Approximation ; Design optimization ; Engineering ; Engineering Sciences ; Mathematical and Computational Engineering ; Mechanics ; Original Paper ; Partial differential equations ; Structural mechanics ; Studies</subject><ispartof>Archives of computational methods in engineering, 2008-09, Vol.15 (3), p.229-275</ispartof><rights>CIMNE, Barcelona, Spain 2008</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2179-eb7a43b7305944f34faef6aa7454eabf21ad1f1310fb101c0fb0d9cd28ae91e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11831-008-9019-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11831-008-9019-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01722593$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rozza, G.</creatorcontrib><creatorcontrib>Huynh, D. B. P.</creatorcontrib><creatorcontrib>Patera, A. T.</creatorcontrib><title>Reduced Basis Approximation and a Posteriori Error Estimation for Affinely Parametrized Elliptic Coercive Partial Differential Equations: Application to Transport and Continuum Mechanics</title><title>Archives of computational methods in engineering</title><addtitle>Arch Computat Methods Eng</addtitle><description>In this paper we consider (hierarchical, Lagrange) reduced basis approximation and
a posteriori
error estimation for linear functional outputs of affinely parametrized elliptic coercive partial differential equations. The essential ingredients are (primal-dual) Galerkin projection onto a low-dimensional space associated with a smooth “parametric manifold”—dimension reduction; efficient and effective greedy sampling methods for identification of optimal and numerically stable approximations—rapid convergence;
a posteriori
error estimation procedures—rigorous and sharp bounds for the linear-functional outputs of interest; and Offline-Online computational decomposition strategies—minimum
marginal cost
for high performance in the real-time/embedded (e.g., parameter-estimation, control) and many-query (e.g., design optimization, multi-model/scale) contexts. We present illustrative results for heat conduction and convection-diffusion, inviscid flow, and linear elasticity; outputs include transport rates, added mass, and stress intensity factors.</description><subject>Approximation</subject><subject>Design optimization</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechanics</subject><subject>Original Paper</subject><subject>Partial differential equations</subject><subject>Structural mechanics</subject><subject>Studies</subject><issn>1134-3060</issn><issn>1886-1784</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kcFOGzEQhldVkZpCH6A3S5w4LPXY3uz6GNKlqRSpEWrP1mR3DEbLOrE3EfAEfWycbEG9cBqP_f2_PPNn2Vfgl8B5-S0CVBJyzqtcc9C5_pBNoKqmOZSV-pjOIFUu-ZR_yj7HeM95obQWk-zvDbW7hlp2hdFFNttsgn90Dzg43zPsW4Zs5eNAwfngWB2CD6yOwythUzuz1vXUPbEVBnygIbjn5Fd3ndsMrmFzT6Fxezo8Dw479t1ZS4H6Y1Nvd0eneJadWOwifflXT7M_1_Xv-SJf_vrxcz5b5o2AUue0LlHJdSl5oZWyUlkkO0UsVaEI11YAtmBBArdr4NCkwlvdtKJC0kCVPM0uRt877MwmpEHCk_HozGK2NIc7DqUQhZZ7SOz5yKalbHcUB3Pvd6FP3zMAIApZCaESBSPVBB9jIPtmC9wcwjFjOCaFYw7hGJ00YtTExPa3FP5zflf0Ats0k8M</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Rozza, G.</creator><creator>Huynh, D. B. P.</creator><creator>Patera, A. T.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>200809</creationdate><title>Reduced Basis Approximation and a Posteriori Error Estimation for Affinely Parametrized Elliptic Coercive Partial Differential Equations</title><author>Rozza, G. ; Huynh, D. B. P. ; Patera, A. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2179-eb7a43b7305944f34faef6aa7454eabf21ad1f1310fb101c0fb0d9cd28ae91e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Approximation</topic><topic>Design optimization</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechanics</topic><topic>Original Paper</topic><topic>Partial differential equations</topic><topic>Structural mechanics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rozza, G.</creatorcontrib><creatorcontrib>Huynh, D. B. P.</creatorcontrib><creatorcontrib>Patera, A. T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Archives of computational methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rozza, G.</au><au>Huynh, D. B. P.</au><au>Patera, A. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced Basis Approximation and a Posteriori Error Estimation for Affinely Parametrized Elliptic Coercive Partial Differential Equations: Application to Transport and Continuum Mechanics</atitle><jtitle>Archives of computational methods in engineering</jtitle><stitle>Arch Computat Methods Eng</stitle><date>2008-09</date><risdate>2008</risdate><volume>15</volume><issue>3</issue><spage>229</spage><epage>275</epage><pages>229-275</pages><issn>1134-3060</issn><eissn>1886-1784</eissn><abstract>In this paper we consider (hierarchical, Lagrange) reduced basis approximation and
a posteriori
error estimation for linear functional outputs of affinely parametrized elliptic coercive partial differential equations. The essential ingredients are (primal-dual) Galerkin projection onto a low-dimensional space associated with a smooth “parametric manifold”—dimension reduction; efficient and effective greedy sampling methods for identification of optimal and numerically stable approximations—rapid convergence;
a posteriori
error estimation procedures—rigorous and sharp bounds for the linear-functional outputs of interest; and Offline-Online computational decomposition strategies—minimum
marginal cost
for high performance in the real-time/embedded (e.g., parameter-estimation, control) and many-query (e.g., design optimization, multi-model/scale) contexts. We present illustrative results for heat conduction and convection-diffusion, inviscid flow, and linear elasticity; outputs include transport rates, added mass, and stress intensity factors.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11831-008-9019-9</doi><tpages>47</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1134-3060 |
ispartof | Archives of computational methods in engineering, 2008-09, Vol.15 (3), p.229-275 |
issn | 1134-3060 1886-1784 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01722593v1 |
source | SpringerNature Journals |
subjects | Approximation Design optimization Engineering Engineering Sciences Mathematical and Computational Engineering Mechanics Original Paper Partial differential equations Structural mechanics Studies |
title | Reduced Basis Approximation and a Posteriori Error Estimation for Affinely Parametrized Elliptic Coercive Partial Differential Equations: Application to Transport and Continuum Mechanics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20Basis%20Approximation%20and%20a%20Posteriori%20Error%20Estimation%20for%20Affinely%20Parametrized%20Elliptic%20Coercive%20Partial%20Differential%20Equations:%20Application%20to%20Transport%20and%20Continuum%20Mechanics&rft.jtitle=Archives%20of%20computational%20methods%20in%20engineering&rft.au=Rozza,%20G.&rft.date=2008-09&rft.volume=15&rft.issue=3&rft.spage=229&rft.epage=275&rft.pages=229-275&rft.issn=1134-3060&rft.eissn=1886-1784&rft_id=info:doi/10.1007/s11831-008-9019-9&rft_dat=%3Cproquest_hal_p%3E2791304421%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1112538224&rft_id=info:pmid/&rfr_iscdi=true |