Reduced Basis Approximation and a Posteriori Error Estimation for Affinely Parametrized Elliptic Coercive Partial Differential Equations: Application to Transport and Continuum Mechanics
In this paper we consider (hierarchical, Lagrange) reduced basis approximation and a posteriori error estimation for linear functional outputs of affinely parametrized elliptic coercive partial differential equations. The essential ingredients are (primal-dual) Galerkin projection onto a low-dimensi...
Gespeichert in:
Veröffentlicht in: | Archives of computational methods in engineering 2008-09, Vol.15 (3), p.229-275 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we consider (hierarchical, Lagrange) reduced basis approximation and
a posteriori
error estimation for linear functional outputs of affinely parametrized elliptic coercive partial differential equations. The essential ingredients are (primal-dual) Galerkin projection onto a low-dimensional space associated with a smooth “parametric manifold”—dimension reduction; efficient and effective greedy sampling methods for identification of optimal and numerically stable approximations—rapid convergence;
a posteriori
error estimation procedures—rigorous and sharp bounds for the linear-functional outputs of interest; and Offline-Online computational decomposition strategies—minimum
marginal cost
for high performance in the real-time/embedded (e.g., parameter-estimation, control) and many-query (e.g., design optimization, multi-model/scale) contexts. We present illustrative results for heat conduction and convection-diffusion, inviscid flow, and linear elasticity; outputs include transport rates, added mass, and stress intensity factors. |
---|---|
ISSN: | 1134-3060 1886-1784 |
DOI: | 10.1007/s11831-008-9019-9 |