The non-linear sewing lemma I: weak formulation

We introduce a new framework to deal with rough differential equations based on flows and their approximations. Our main result is to prove that measurable flows exist under weak conditions, even solutions to the corresponding rough differential equations are not unique. We show that under additiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of probability 2019-01, Vol.24 (none), p.1-24
Hauptverfasser: Brault, Antoine, Lejay, Antoine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a new framework to deal with rough differential equations based on flows and their approximations. Our main result is to prove that measurable flows exist under weak conditions, even solutions to the corresponding rough differential equations are not unique. We show that under additional conditions of the approximation, there exists a unique Lipschitz flow. Then, a perturbation formula is given. Finally, we link our approach to the additive, multiplicative sewing lemmas and the rough Euler scheme.
ISSN:1083-6489
1083-6489
DOI:10.1214/19-EJP313