Nonparametric regression estimation onto a Poisson point process covariate

Let Y be a real random variable and X be a Poisson point process. We investigate rates of convergence of a nonparametric estimate r̂(x) of the regression function r(x) = \hbox{$\mathbb E$}(Y|X = x), based on n independent copies of the pair (X,Y). The estimator r̂ is constructed using a Wiener–Itô d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability and statistics 2015, Vol.19, p.251-267
Hauptverfasser: Cadre, Benoît, Truquet, Lionel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Y be a real random variable and X be a Poisson point process. We investigate rates of convergence of a nonparametric estimate r̂(x) of the regression function r(x) = \hbox{$\mathbb E$}(Y|X = x), based on n independent copies of the pair (X,Y). The estimator r̂ is constructed using a Wiener–Itô decomposition of r(X). In this infinite-dimensional setting, we first obtain a finite sample bound on the expected squared difference \hbox{$\mathbb E$}(r̂(X) - r(X))2. Then, under a condition ensuring that the model is genuinely infinite-dimensional, we obtain the exact rate of convergence of ln\hbox{$\mathbb E$}(r̂(X) - r(X))2.
ISSN:1292-8100
1262-3318
DOI:10.1051/ps/2014023