A Semi-Lagrangian Scheme for a Modified Version of the Hughes’ Model for Pedestrian Flow
In this paper, we present a semi-Lagrangian scheme for a regularized version of the Hughes’ model for pedestrian flow. Hughes originally proposed a coupled nonlinear PDE system describing the evolution of a large pedestrian group trying to exit a domain as fast as possible. The original model corres...
Gespeichert in:
Veröffentlicht in: | Dynamic games and applications 2017-12, Vol.7 (4), p.683-705 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we present a semi-Lagrangian scheme for a regularized version of the Hughes’ model for pedestrian flow. Hughes originally proposed a coupled nonlinear PDE system describing the evolution of a large pedestrian group trying to exit a domain as fast as possible. The original model corresponds to a system of a conservation law for the pedestrian density and an eikonal equation to determine the weighted distance to the exit. We consider this model in the presence of small diffusion and discuss the numerical analysis of the proposed semi-Lagrangian scheme. Furthermore, we illustrate the effect of small diffusion on the exit time with various numerical experiments. |
---|---|
ISSN: | 2153-0785 2153-0793 |
DOI: | 10.1007/s13235-016-0202-6 |