Size and Surface Chemistry Tuning of Silicon Carbide Nanoparticles
Chemical transformations on the surface of commercially available 3C-SiC nanoparticles were studied by means of FTIR, XPS, and temperature-programmed desorption mass spectrometry methods. Thermal oxidation of SiC NPs resulted in the formation of a hydroxylated SiO2 surface layer with C3Si–H and CH x...
Gespeichert in:
Veröffentlicht in: | Langmuir 2017-11, Vol.33 (47), p.13561-13571 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chemical transformations on the surface of commercially available 3C-SiC nanoparticles were studied by means of FTIR, XPS, and temperature-programmed desorption mass spectrometry methods. Thermal oxidation of SiC NPs resulted in the formation of a hydroxylated SiO2 surface layer with C3Si–H and CH x groups over the SiO2/SiC interface. Controllable oxidation followed by oxide dissolution in HF or KOH solution allowed the SiC NPs size tuning from 17 to 9 nm. Oxide-free SiC surfaces, terminated by hydroxyls and C3Si–H groups, can be efficiently functionalized by alkenes under thermal or photochemical initiation. Treatment of SiC NPs by HF/HNO3 mixture produces a carbon-enriched surface layer with carboxylic acid groups susceptible to amide chemistry functionalization. The hydroxylated, carboxylated, and aminated SiC NPs form stable aqueous sols. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.7b02784 |