Indoor 3-D Radar Imaging for Low-RCS Analysis
An original 3-D radar imaging system is presented for radar cross section (RCS) analysis, i.e., to identify and characterize the radar backscattering components of an object. Based on a 3-D spherical experimental setup, where the residual echo signal is more efficiently reduced in the useful zone, i...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2017-04, Vol.53 (2), p.995-1008 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1008 |
---|---|
container_issue | 2 |
container_start_page | 995 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 53 |
creator | Minvielle, Pierre Massaloux, Pierre Giovannelli, Jean-Francois |
description | An original 3-D radar imaging system is presented for radar cross section (RCS) analysis, i.e., to identify and characterize the radar backscattering components of an object. Based on a 3-D spherical experimental setup, where the residual echo signal is more efficiently reduced in the useful zone, it is especially adapted to deal with low-RCS analysis. Due to a roll rotation, the electric field direction varies concentrically while the scattered data are collected. To overcome this issue, a specific 3-D radar imaging algorithm is developed. Based on fast regularization inversion, more precisely the minimum norm least squares solution, it manages to determine, from a single pass collection, three huge 3-D scatterer maps at once, which correspond to HH, VV, and HV polarizations at emission and reception. The algorithm is applied successfully to real X-band datasets collected in the accurate 3-D spherical experimental layout, from a metallic cone with patches and an arrow shape. It is compared with the conventional 3-D polar format algorithm where the scatterer information is irretrievably mixed-up. |
doi_str_mv | 10.1109/TAES.2017.2667378 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01695128v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7849186</ieee_id><sourcerecordid>1917742083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-eeb85716239f9f8cfe5c08f43a002b03c347012f603df7e3cd29c3abc514e2d03</originalsourceid><addsrcrecordid>eNo9kEFrAjEUhENpodb2B5ReFnrqIfa9ZHeTHMXaKiwU1J5DzCZ2RV2baIv_vruseHq84ZthGEIeEQaIoF4Xw_F8wADFgOW54EJekR5mmaAqB35NegAoqWIZ3pK7GNfNm8qU9wid7sq6Dgmnb8nMlCYk061ZVbtV4hu1qP_obDRPhjuzOcUq3pMbbzbRPZxvn3y9jxejCS0-P6ajYUEtZ-JAnVvKTGDOuPLKS-tdZkH6lBsAtgRueSoAmW-qlV44bkumLDdLm2HqWAm8T1663G-z0ftQbU046dpUejIsdKsB5ipDJn-xYZ87dh_qn6OLB72uj6EpHDUqFCJlIHlDYUfZUMcYnL_EIuh2Qd0uqNsF9XnBxvPUeSrn3IUXMlUoc_4PV2Zohg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917742083</pqid></control><display><type>article</type><title>Indoor 3-D Radar Imaging for Low-RCS Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Minvielle, Pierre ; Massaloux, Pierre ; Giovannelli, Jean-Francois</creator><creatorcontrib>Minvielle, Pierre ; Massaloux, Pierre ; Giovannelli, Jean-Francois</creatorcontrib><description>An original 3-D radar imaging system is presented for radar cross section (RCS) analysis, i.e., to identify and characterize the radar backscattering components of an object. Based on a 3-D spherical experimental setup, where the residual echo signal is more efficiently reduced in the useful zone, it is especially adapted to deal with low-RCS analysis. Due to a roll rotation, the electric field direction varies concentrically while the scattered data are collected. To overcome this issue, a specific 3-D radar imaging algorithm is developed. Based on fast regularization inversion, more precisely the minimum norm least squares solution, it manages to determine, from a single pass collection, three huge 3-D scatterer maps at once, which correspond to HH, VV, and HV polarizations at emission and reception. The algorithm is applied successfully to real X-band datasets collected in the accurate 3-D spherical experimental layout, from a metallic cone with patches and an arrow shape. It is compared with the conventional 3-D polar format algorithm where the scatterer information is irretrievably mixed-up.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2017.2667378</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D radar imaging ; Algorithms ; Antenna measurements ; Applications ; Backscatter ; Backscattering ; Engineering Sciences ; Imaging ; Least squares method ; linear inverse problem ; low-radar cross section (RCS) analysis ; Patches (structures) ; Radar ; Radar cross sections ; Radar imaging ; Regularization ; Signal and Image processing ; Statistics ; Superhigh frequencies ; Three-dimensional displays</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2017-04, Vol.53 (2), p.995-1008</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-eeb85716239f9f8cfe5c08f43a002b03c347012f603df7e3cd29c3abc514e2d03</citedby><cites>FETCH-LOGICAL-c327t-eeb85716239f9f8cfe5c08f43a002b03c347012f603df7e3cd29c3abc514e2d03</cites><orcidid>0000-0002-3653-048X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7849186$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7849186$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-01695128$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Minvielle, Pierre</creatorcontrib><creatorcontrib>Massaloux, Pierre</creatorcontrib><creatorcontrib>Giovannelli, Jean-Francois</creatorcontrib><title>Indoor 3-D Radar Imaging for Low-RCS Analysis</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>An original 3-D radar imaging system is presented for radar cross section (RCS) analysis, i.e., to identify and characterize the radar backscattering components of an object. Based on a 3-D spherical experimental setup, where the residual echo signal is more efficiently reduced in the useful zone, it is especially adapted to deal with low-RCS analysis. Due to a roll rotation, the electric field direction varies concentrically while the scattered data are collected. To overcome this issue, a specific 3-D radar imaging algorithm is developed. Based on fast regularization inversion, more precisely the minimum norm least squares solution, it manages to determine, from a single pass collection, three huge 3-D scatterer maps at once, which correspond to HH, VV, and HV polarizations at emission and reception. The algorithm is applied successfully to real X-band datasets collected in the accurate 3-D spherical experimental layout, from a metallic cone with patches and an arrow shape. It is compared with the conventional 3-D polar format algorithm where the scatterer information is irretrievably mixed-up.</description><subject>3-D radar imaging</subject><subject>Algorithms</subject><subject>Antenna measurements</subject><subject>Applications</subject><subject>Backscatter</subject><subject>Backscattering</subject><subject>Engineering Sciences</subject><subject>Imaging</subject><subject>Least squares method</subject><subject>linear inverse problem</subject><subject>low-radar cross section (RCS) analysis</subject><subject>Patches (structures)</subject><subject>Radar</subject><subject>Radar cross sections</subject><subject>Radar imaging</subject><subject>Regularization</subject><subject>Signal and Image processing</subject><subject>Statistics</subject><subject>Superhigh frequencies</subject><subject>Three-dimensional displays</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFrAjEUhENpodb2B5ReFnrqIfa9ZHeTHMXaKiwU1J5DzCZ2RV2baIv_vruseHq84ZthGEIeEQaIoF4Xw_F8wADFgOW54EJekR5mmaAqB35NegAoqWIZ3pK7GNfNm8qU9wid7sq6Dgmnb8nMlCYk061ZVbtV4hu1qP_obDRPhjuzOcUq3pMbbzbRPZxvn3y9jxejCS0-P6ajYUEtZ-JAnVvKTGDOuPLKS-tdZkH6lBsAtgRueSoAmW-qlV44bkumLDdLm2HqWAm8T1663G-z0ftQbU046dpUejIsdKsB5ipDJn-xYZ87dh_qn6OLB72uj6EpHDUqFCJlIHlDYUfZUMcYnL_EIuh2Qd0uqNsF9XnBxvPUeSrn3IUXMlUoc_4PV2Zohg</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Minvielle, Pierre</creator><creator>Massaloux, Pierre</creator><creator>Giovannelli, Jean-Francois</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3653-048X</orcidid></search><sort><creationdate>20170401</creationdate><title>Indoor 3-D Radar Imaging for Low-RCS Analysis</title><author>Minvielle, Pierre ; Massaloux, Pierre ; Giovannelli, Jean-Francois</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-eeb85716239f9f8cfe5c08f43a002b03c347012f603df7e3cd29c3abc514e2d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>3-D radar imaging</topic><topic>Algorithms</topic><topic>Antenna measurements</topic><topic>Applications</topic><topic>Backscatter</topic><topic>Backscattering</topic><topic>Engineering Sciences</topic><topic>Imaging</topic><topic>Least squares method</topic><topic>linear inverse problem</topic><topic>low-radar cross section (RCS) analysis</topic><topic>Patches (structures)</topic><topic>Radar</topic><topic>Radar cross sections</topic><topic>Radar imaging</topic><topic>Regularization</topic><topic>Signal and Image processing</topic><topic>Statistics</topic><topic>Superhigh frequencies</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minvielle, Pierre</creatorcontrib><creatorcontrib>Massaloux, Pierre</creatorcontrib><creatorcontrib>Giovannelli, Jean-Francois</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Minvielle, Pierre</au><au>Massaloux, Pierre</au><au>Giovannelli, Jean-Francois</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indoor 3-D Radar Imaging for Low-RCS Analysis</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>53</volume><issue>2</issue><spage>995</spage><epage>1008</epage><pages>995-1008</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>An original 3-D radar imaging system is presented for radar cross section (RCS) analysis, i.e., to identify and characterize the radar backscattering components of an object. Based on a 3-D spherical experimental setup, where the residual echo signal is more efficiently reduced in the useful zone, it is especially adapted to deal with low-RCS analysis. Due to a roll rotation, the electric field direction varies concentrically while the scattered data are collected. To overcome this issue, a specific 3-D radar imaging algorithm is developed. Based on fast regularization inversion, more precisely the minimum norm least squares solution, it manages to determine, from a single pass collection, three huge 3-D scatterer maps at once, which correspond to HH, VV, and HV polarizations at emission and reception. The algorithm is applied successfully to real X-band datasets collected in the accurate 3-D spherical experimental layout, from a metallic cone with patches and an arrow shape. It is compared with the conventional 3-D polar format algorithm where the scatterer information is irretrievably mixed-up.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2017.2667378</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3653-048X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2017-04, Vol.53 (2), p.995-1008 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01695128v1 |
source | IEEE Electronic Library (IEL) |
subjects | 3-D radar imaging Algorithms Antenna measurements Applications Backscatter Backscattering Engineering Sciences Imaging Least squares method linear inverse problem low-radar cross section (RCS) analysis Patches (structures) Radar Radar cross sections Radar imaging Regularization Signal and Image processing Statistics Superhigh frequencies Three-dimensional displays |
title | Indoor 3-D Radar Imaging for Low-RCS Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T16%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indoor%203-D%20Radar%20Imaging%20for%20Low-RCS%20Analysis&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Minvielle,%20Pierre&rft.date=2017-04-01&rft.volume=53&rft.issue=2&rft.spage=995&rft.epage=1008&rft.pages=995-1008&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2017.2667378&rft_dat=%3Cproquest_RIE%3E1917742083%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917742083&rft_id=info:pmid/&rft_ieee_id=7849186&rfr_iscdi=true |