Indoor 3-D Radar Imaging for Low-RCS Analysis
An original 3-D radar imaging system is presented for radar cross section (RCS) analysis, i.e., to identify and characterize the radar backscattering components of an object. Based on a 3-D spherical experimental setup, where the residual echo signal is more efficiently reduced in the useful zone, i...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2017-04, Vol.53 (2), p.995-1008 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An original 3-D radar imaging system is presented for radar cross section (RCS) analysis, i.e., to identify and characterize the radar backscattering components of an object. Based on a 3-D spherical experimental setup, where the residual echo signal is more efficiently reduced in the useful zone, it is especially adapted to deal with low-RCS analysis. Due to a roll rotation, the electric field direction varies concentrically while the scattered data are collected. To overcome this issue, a specific 3-D radar imaging algorithm is developed. Based on fast regularization inversion, more precisely the minimum norm least squares solution, it manages to determine, from a single pass collection, three huge 3-D scatterer maps at once, which correspond to HH, VV, and HV polarizations at emission and reception. The algorithm is applied successfully to real X-band datasets collected in the accurate 3-D spherical experimental layout, from a metallic cone with patches and an arrow shape. It is compared with the conventional 3-D polar format algorithm where the scatterer information is irretrievably mixed-up. |
---|---|
ISSN: | 0018-9251 1557-9603 |
DOI: | 10.1109/TAES.2017.2667378 |