Temporal integration of soil N2O fluxes: validation of IPNOA station automatic chamber prototype

The assessment of nitrous oxide (N 2 O) fluxes from agricultural soil surfaces still poses a major challenge to the scientific community. The evaluations of integrated soil fluxes of N 2 O are difficult owing to their lower emissions when compared with CO 2 . These emissions are also sporadic as env...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental monitoring and assessment 2017-10, Vol.189 (10), p.1-485, Article 485
Hauptverfasser: Laville, P., Bosco, S., Volpi, I., Virgili, G., Neri, S., Continanza, D., Bonari, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The assessment of nitrous oxide (N 2 O) fluxes from agricultural soil surfaces still poses a major challenge to the scientific community. The evaluations of integrated soil fluxes of N 2 O are difficult owing to their lower emissions when compared with CO 2 . These emissions are also sporadic as environmental conditions act as a limiting factor. A station prototype was developed to integrate annual N 2 O and CO 2 emissions using an automatic chamber technique and infrared spectrometers within the LIFE project (IPNOA: LIFE11 ENV/IT/00032). It was installed from June 2014 to October 2015 in an experimental maize field in Tuscany. The detection limits for the fluxes were evaluated up to 1.6 ng N-N 2 O m 2  s −1 and 0.3 μg C-CO 2  m 2  s −1 . A cross-comparison carried out in September 2015 with the “mobile IPNOA prototype”; a high-sensibility transportable instrument already validated provided evidence of very similar values and highlighted flux assessment limitations according to the gas analyzers used. The permanent monitoring device showed that temporal distribution of N 2 O fluxes can be very large and discontinuous over short periods of less than 10 days and that N 2 O fluxes were below the detection limit of the instrumentation during approximately 70% of the measurement time. The N 2 O emission factors were estimated to 1.9% in 2014 and 1.7% in 2015, within the range of IPCC assessments.
ISSN:0167-6369
1573-2959
DOI:10.1007/s10661-017-6181-2