Imperfect Bifurcation for the Quasi-Geostrophic Shallow-Water Equations

We study analytical and numerical aspects of the bifurcation diagram of simply connected rotating vortex patch equilibria for the quasi-geostrophic shallow-water (QGSW) equations. The QGSW equations are a generalisation of the Euler equations and contain an additional parameter, the Rossby deformati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2019-03, Vol.231 (3), p.1853-1915
Hauptverfasser: Dritschel, David Gerard, Hmidi, Taoufik, Renault, Coralie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study analytical and numerical aspects of the bifurcation diagram of simply connected rotating vortex patch equilibria for the quasi-geostrophic shallow-water (QGSW) equations. The QGSW equations are a generalisation of the Euler equations and contain an additional parameter, the Rossby deformation length ε - 1 , which enters into the relation between the stream function and (potential) vorticity. The Euler equations are recovered in the limit ε → 0 . We prove, close to circular (Rankine) vortices, the persistence of the bifurcation diagram for arbitrary Rossby deformation length. However we show that the two-fold branch, corresponding to Kirchhoff ellipses for the Euler equations, is never connected even for small values ε , and indeed is split into a countable set of disjoint connected branches. Accurate numerical calculations of the global structure of the bifurcation diagram and of the limiting equilibrium states are also presented to complement the mathematical analysis.
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-018-1312-7