The Cauchy problem of the Kadomtsev-Petviashvili hierarchy with arbitrary coefficient algebra

Mulase solved the Cauchy problem of the Kadomtsev-Petviashvili (KP) hierarchy in an algebraic category in "Solvability of the super KP equation and a generalization of the Birkhoff decomposition" (Inventiones Mathematicae, 1988), making use of a delicate factorization of an infinite-dimens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear mathematical physics 2017-01, Vol.24 (Suppl 1), p.103-120
Hauptverfasser: Rad, Anahita Eslami, Magnot, Jean-Pierre, Reyes, Enrique G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mulase solved the Cauchy problem of the Kadomtsev-Petviashvili (KP) hierarchy in an algebraic category in "Solvability of the super KP equation and a generalization of the Birkhoff decomposition" (Inventiones Mathematicae, 1988), making use of a delicate factorization of an infinite-dimensional group of formal pseudodifferential operators of infinite order. We prove Mulase's factorization theorem in a smooth category in the setting of formal pseudo-differential operators with coefficients in a (non-commutative) algebra equipped with a valuation. As an application, we solve the initial value problem for the KP hierarchy using r-matrix theory.
ISSN:1402-9251
1776-0852
1776-0852
DOI:10.1080/14029251.2017.1418057