Approximation properties and absence of Cartan subalgebra for free Araki–Woods factors

We show that all the free Araki–Woods factors Γ ( H R , U t ) ″ have the complete metric approximation property. Using Ozawa–Popaʼs techniques, we then prove that every nonamenable subfactor N ⊂ Γ ( H R , U t ) ″ which is the range of a normal conditional expectation has no Cartan subalgebra. We fin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2011-10, Vol.228 (2), p.764-802
Hauptverfasser: Houdayer, Cyril, Ricard, Éric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 802
container_issue 2
container_start_page 764
container_title Advances in mathematics (New York. 1965)
container_volume 228
creator Houdayer, Cyril
Ricard, Éric
description We show that all the free Araki–Woods factors Γ ( H R , U t ) ″ have the complete metric approximation property. Using Ozawa–Popaʼs techniques, we then prove that every nonamenable subfactor N ⊂ Γ ( H R , U t ) ″ which is the range of a normal conditional expectation has no Cartan subalgebra. We finally deduce that the type III 1 factors constructed by Connes in the ʼ70s can never be isomorphic to any free Araki–Woods factor, which answers a question of Shlyakhtenko and Vaes.
doi_str_mv 10.1016/j.aim.2011.06.010
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01662170v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000187081100199X</els_id><sourcerecordid>S000187081100199X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-c80827d8663d952c068ff2d7d2b9575dc5a63b325920a455933400566615da33</originalsourceid><addsrcrecordid>eNp9kM1KxDAQgIMouK4-gLdcPbRO0iZt8VQWdYUFLwt6C2l-NOtuU5IqevMdfEOfxJQVj57mh_mGmQ-hcwI5AcIvN7l0u5wCITnwHAgcoBmBBjIKNT1EMwAgWV1BfYxOYtyksilJM0OP7TAE_-52cnS-xykfTBidiVj2Gssuml4Z7C1eyDDKHsfXTm6fTBcktj5gG4zBbZAv7vvz68F7HbGVavQhnqIjK7fRnP3GOVrfXK8Xy2x1f3u3aFeZKksYM1Wn-ypdc17ohlEFvLaW6krTrmEV04pJXnQFZQ0FWTLWFEUJwDjnhGlZFHN0sV_7LLdiCOmP8CG8dGLZrsTUS3I4JRW8kTRL9rMq-BiDsX8AATFZFBuRLIrJogCeUEjM1Z4x6Yc3Z4KIyk1OtAtGjUJ79w_9A_1PeeI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Approximation properties and absence of Cartan subalgebra for free Araki–Woods factors</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Houdayer, Cyril ; Ricard, Éric</creator><creatorcontrib>Houdayer, Cyril ; Ricard, Éric</creatorcontrib><description>We show that all the free Araki–Woods factors Γ ( H R , U t ) ″ have the complete metric approximation property. Using Ozawa–Popaʼs techniques, we then prove that every nonamenable subfactor N ⊂ Γ ( H R , U t ) ″ which is the range of a normal conditional expectation has no Cartan subalgebra. We finally deduce that the type III 1 factors constructed by Connes in the ʼ70s can never be isomorphic to any free Araki–Woods factor, which answers a question of Shlyakhtenko and Vaes.</description><identifier>ISSN: 0001-8708</identifier><identifier>EISSN: 1090-2082</identifier><identifier>DOI: 10.1016/j.aim.2011.06.010</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Cartan subalgebras ; Complete metric approximation property ; Deformation/rigidity ; Free probability ; Functional Analysis ; Mathematics ; Type III factors</subject><ispartof>Advances in mathematics (New York. 1965), 2011-10, Vol.228 (2), p.764-802</ispartof><rights>2011 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-c80827d8663d952c068ff2d7d2b9575dc5a63b325920a455933400566615da33</citedby><cites>FETCH-LOGICAL-c440t-c80827d8663d952c068ff2d7d2b9575dc5a63b325920a455933400566615da33</cites><orcidid>0000-0002-5953-263X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S000187081100199X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01662170$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Houdayer, Cyril</creatorcontrib><creatorcontrib>Ricard, Éric</creatorcontrib><title>Approximation properties and absence of Cartan subalgebra for free Araki–Woods factors</title><title>Advances in mathematics (New York. 1965)</title><description>We show that all the free Araki–Woods factors Γ ( H R , U t ) ″ have the complete metric approximation property. Using Ozawa–Popaʼs techniques, we then prove that every nonamenable subfactor N ⊂ Γ ( H R , U t ) ″ which is the range of a normal conditional expectation has no Cartan subalgebra. We finally deduce that the type III 1 factors constructed by Connes in the ʼ70s can never be isomorphic to any free Araki–Woods factor, which answers a question of Shlyakhtenko and Vaes.</description><subject>Cartan subalgebras</subject><subject>Complete metric approximation property</subject><subject>Deformation/rigidity</subject><subject>Free probability</subject><subject>Functional Analysis</subject><subject>Mathematics</subject><subject>Type III factors</subject><issn>0001-8708</issn><issn>1090-2082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAQgIMouK4-gLdcPbRO0iZt8VQWdYUFLwt6C2l-NOtuU5IqevMdfEOfxJQVj57mh_mGmQ-hcwI5AcIvN7l0u5wCITnwHAgcoBmBBjIKNT1EMwAgWV1BfYxOYtyksilJM0OP7TAE_-52cnS-xykfTBidiVj2Gssuml4Z7C1eyDDKHsfXTm6fTBcktj5gG4zBbZAv7vvz68F7HbGVavQhnqIjK7fRnP3GOVrfXK8Xy2x1f3u3aFeZKksYM1Wn-ypdc17ohlEFvLaW6krTrmEV04pJXnQFZQ0FWTLWFEUJwDjnhGlZFHN0sV_7LLdiCOmP8CG8dGLZrsTUS3I4JRW8kTRL9rMq-BiDsX8AATFZFBuRLIrJogCeUEjM1Z4x6Yc3Z4KIyk1OtAtGjUJ79w_9A_1PeeI</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Houdayer, Cyril</creator><creator>Ricard, Éric</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5953-263X</orcidid></search><sort><creationdate>20111001</creationdate><title>Approximation properties and absence of Cartan subalgebra for free Araki–Woods factors</title><author>Houdayer, Cyril ; Ricard, Éric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-c80827d8663d952c068ff2d7d2b9575dc5a63b325920a455933400566615da33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cartan subalgebras</topic><topic>Complete metric approximation property</topic><topic>Deformation/rigidity</topic><topic>Free probability</topic><topic>Functional Analysis</topic><topic>Mathematics</topic><topic>Type III factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Houdayer, Cyril</creatorcontrib><creatorcontrib>Ricard, Éric</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Advances in mathematics (New York. 1965)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Houdayer, Cyril</au><au>Ricard, Éric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximation properties and absence of Cartan subalgebra for free Araki–Woods factors</atitle><jtitle>Advances in mathematics (New York. 1965)</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>228</volume><issue>2</issue><spage>764</spage><epage>802</epage><pages>764-802</pages><issn>0001-8708</issn><eissn>1090-2082</eissn><abstract>We show that all the free Araki–Woods factors Γ ( H R , U t ) ″ have the complete metric approximation property. Using Ozawa–Popaʼs techniques, we then prove that every nonamenable subfactor N ⊂ Γ ( H R , U t ) ″ which is the range of a normal conditional expectation has no Cartan subalgebra. We finally deduce that the type III 1 factors constructed by Connes in the ʼ70s can never be isomorphic to any free Araki–Woods factor, which answers a question of Shlyakhtenko and Vaes.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.aim.2011.06.010</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0002-5953-263X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-8708
ispartof Advances in mathematics (New York. 1965), 2011-10, Vol.228 (2), p.764-802
issn 0001-8708
1090-2082
language eng
recordid cdi_hal_primary_oai_HAL_hal_01662170v1
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Cartan subalgebras
Complete metric approximation property
Deformation/rigidity
Free probability
Functional Analysis
Mathematics
Type III factors
title Approximation properties and absence of Cartan subalgebra for free Araki–Woods factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A57%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximation%20properties%20and%20absence%20of%20Cartan%20subalgebra%20for%20free%20Araki%E2%80%93Woods%20factors&rft.jtitle=Advances%20in%20mathematics%20(New%20York.%201965)&rft.au=Houdayer,%20Cyril&rft.date=2011-10-01&rft.volume=228&rft.issue=2&rft.spage=764&rft.epage=802&rft.pages=764-802&rft.issn=0001-8708&rft.eissn=1090-2082&rft_id=info:doi/10.1016/j.aim.2011.06.010&rft_dat=%3Celsevier_hal_p%3ES000187081100199X%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S000187081100199X&rfr_iscdi=true