Approximation properties and absence of Cartan subalgebra for free Araki–Woods factors
We show that all the free Araki–Woods factors Γ ( H R , U t ) ″ have the complete metric approximation property. Using Ozawa–Popaʼs techniques, we then prove that every nonamenable subfactor N ⊂ Γ ( H R , U t ) ″ which is the range of a normal conditional expectation has no Cartan subalgebra. We fin...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2011-10, Vol.228 (2), p.764-802 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that all the free Araki–Woods factors
Γ
(
H
R
,
U
t
)
″
have the complete metric approximation property. Using Ozawa–Popaʼs techniques, we then prove that every nonamenable subfactor
N
⊂
Γ
(
H
R
,
U
t
)
″
which is the range of a normal conditional expectation has no Cartan subalgebra. We finally deduce that the type III
1 factors constructed by Connes in the ʼ70s can never be isomorphic to any free Araki–Woods factor, which answers a question of Shlyakhtenko and Vaes. |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2011.06.010 |