Approximation properties and absence of Cartan subalgebra for free Araki–Woods factors

We show that all the free Araki–Woods factors Γ ( H R , U t ) ″ have the complete metric approximation property. Using Ozawa–Popaʼs techniques, we then prove that every nonamenable subfactor N ⊂ Γ ( H R , U t ) ″ which is the range of a normal conditional expectation has no Cartan subalgebra. We fin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2011-10, Vol.228 (2), p.764-802
Hauptverfasser: Houdayer, Cyril, Ricard, Éric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that all the free Araki–Woods factors Γ ( H R , U t ) ″ have the complete metric approximation property. Using Ozawa–Popaʼs techniques, we then prove that every nonamenable subfactor N ⊂ Γ ( H R , U t ) ″ which is the range of a normal conditional expectation has no Cartan subalgebra. We finally deduce that the type III 1 factors constructed by Connes in the ʼ70s can never be isomorphic to any free Araki–Woods factor, which answers a question of Shlyakhtenko and Vaes.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2011.06.010